DRS4 Forum
  DRS4 Discussion Forum, Page 11 of 45  Not logged in ELOG logo
ID Date Author Subjectdown
  238   Thu Apr 11 23:32:57 2013 Jill Russekcascading -- DRS4 Osci.cpp & DRS.cpp

Stefan Ritt wrote:

Jill Russek wrote:

Stefan Ritt wrote:

Jill Russek wrote:

Would it be possible to just hardcode a few lines in the SetChannelConfig in DRS.cpp method as such:

     fChannelConfig = 0x01; //gives me eight
      d = fChannelConfig | (fDominoMode << 8) | (1 << 9) | (fWSRLoop << 10) | (0xF8 << 8);

      Write(T_CTRL, REG_CHANNEL_CONFIG, &d, 2);
      fChannelDepth = 8 * (fDecimation ? kNumberOfBins/2 : kNumberOfBins);// gives eight times the bins

 

then modify the GetWave method/function to include another else if statement similar to  "else if (fChannelCascading == 2) {"  but would be modifidied for fChannelCascading == 8?

 

By, "But then you will hit the hard-wired limit in Osci.cpp" do you mean  hard-coded? Would changing the hard code just amount to resizing all of the arrays, and replacing all the '2*kNumberBins"  with '8*kNumberBins' ?

 

I'm afraid of drs_exam.cpp because it doesn't come with all the perks of Osci.cpp. It seems less daunting to just modify Osci.cpp then to try understanding everything I need to include in drs_exam.cpp because I'm also using an external trigger, and saving the waveform to an external text file.

Thanks!

/Jill

Sure it would be possible to code it, but it's not just a few lines. Besides Osci.cpp you have to massage DOScreen.cpp, Measurement.cpp and probably more since they all rely on the array size of the waveform. So if I would do it it would take me probably a couple of days including the debugging, which I don't have right now. Furthermore, as I said you have to combine all eight channels properly. For two channels, it's already pretty complicated (see lines 3537+ in DRS.cpp). I had to make myself a visual scheme in order to understand it correctly, which I attached. For eight channels, the write shift register (WSR) can have values 0-7, depending in which channel you got a trigger. Then you have to sort it out again to get one linear array with the proper order of the fragments. So you see, it's not just changing a few lines of code. In principle it's possible, but it's lots of work.

Best regards,

Stefan

 Stefan, thanks for your help so far. If I go with your plan A of just modifying drs_exam.cpp, is there a quick way to get it to save the data from the wave, like how osci.cpp spits out an xml file? (Ignoring the cascading aspect for now)

Thanks again :)

/Jill

Well, you have to learn C programming, I won't do it for you. drs_exam.cpp contains already code to write to the ASCII file data.txt, so you just can use that or modify it to your needs.

/Stefan

 Ha! So then the answer is no, there isn't a ready made function/method to pull out the timing and voltage,  like how it was done in osci.cpp. That's all I wanted to know. (Not whether you would write it for me! Only trying to save time!) Thanks!

/Jill

  239   Fri Apr 12 08:25:05 2013 Stefan Rittcascading -- DRS4 Osci.cpp & DRS.cpp

Jill Russek wrote:

Stefan Ritt wrote:

Jill Russek wrote:

 Stefan, thanks for your help so far. If I go with your plan A of just modifying drs_exam.cpp, is there a quick way to get it to save the data from the wave, like how osci.cpp spits out an xml file? (Ignoring the cascading aspect for now)

Thanks again :)

/Jill

Well, you have to learn C programming, I won't do it for you. drs_exam.cpp contains already code to write to the ASCII file data.txt, so you just can use that or modify it to your needs.

/Stefan

 Ha! So then the answer is no, there isn't a ready made function/method to pull out the timing and voltage,  like how it was done in osci.cpp. That's all I wanted to know. (Not whether you would write it for me! Only trying to save time!) Thanks!

/Jill

You misunderstood. The answer is yes. drs_exam.cpp contains already code to write to an ASCII file. If you actually look into the file, you see:

   f = fopen("data.txt", "w");
   ...
   b->GetTime(0, b->GetTriggerCell(0), time_array);
   ...
   b->GetWave(0, 0, wave_array[0]);
   ...
   fprintf(f, "%5.2f %6.2f\n", time_array[i], wave_array[0][i]);

which actually pulls out the timing and voltage and writes it to the file.

  647   Wed Dec 20 15:30:38 2017 Yoni Shercascading -- DRS4 Osci.cpp & DRS.cpp

Hi, 

I'm trying to do the same thing (get 1 channel with 8192 bins), but I'm having some trouble with it. When I call SetChannelConfig(0, 8, 1) as suggeted, I get output that looks like noise on all readouts. Could you please explain what is supposed to happen in this case? 

I will happily write the code to combine the channels correctly (and debug it) if I can understand what needs to be done. 

(I should mention that my primary concern is a MATLAB interface which I have already written and don't mind sharing when it's complete). 

 

Yoni Sher

Stefan Ritt wrote:

 

Jill Russek wrote:

 

Stefan Ritt wrote:

 

Jill Russek wrote:

 Stefan, thanks for your help so far. If I go with your plan A of just modifying drs_exam.cpp, is there a quick way to get it to save the data from the wave, like how osci.cpp spits out an xml file? (Ignoring the cascading aspect for now)

Thanks again :)

/Jill

Well, you have to learn C programming, I won't do it for you. drs_exam.cpp contains already code to write to the ASCII file data.txt, so you just can use that or modify it to your needs.

/Stefan

 Ha! So then the answer is no, there isn't a ready made function/method to pull out the timing and voltage,  like how it was done in osci.cpp. That's all I wanted to know. (Not whether you would write it for me! Only trying to save time!) Thanks!

/Jill

You misunderstood. The answer is yes. drs_exam.cpp contains already code to write to an ASCII file. If you actually look into the file, you see:

   f = fopen("data.txt", "w");
   ...
   b->GetTime(0, b->GetTriggerCell(0), time_array);
   ...
   b->GetWave(0, 0, wave_array[0]);
   ...
   fprintf(f, "%5.2f %6.2f\n", time_array[i], wave_array[0][i]);

which actually pulls out the timing and voltage and writes it to the file.

 

  648   Wed Dec 20 16:21:42 2017 Stefan Rittcascading -- DRS4 Osci.cpp & DRS.cpp

First you need a board which is modified in hardware to support channel cascading. Basically there are internal resistors which connect each input connector to two channels. You have to specify this when you order the board. Then you can use the new drs_exam_2048.cpp file contains in the git repository which correctly configures and reads out the board in two-channel cascading mode. Putting all 8 channels together is not supported by the evaluation boards.

Stefan

Yoni Sher wrote:

Hi, 

I'm trying to do the same thing (get 1 channel with 8192 bins), but I'm having some trouble with it. When I call SetChannelConfig(0, 8, 1) as suggeted, I get output that looks like noise on all readouts. Could you please explain what is supposed to happen in this case? 

I will happily write the code to combine the channels correctly (and debug it) if I can understand what needs to be done. 

(I should mention that my primary concern is a MATLAB interface which I have already written and don't mind sharing when it's complete). 

 

Yoni Sher

Stefan Ritt wrote:

 

Jill Russek wrote:

 

Stefan Ritt wrote:

 

Jill Russek wrote:

 Stefan, thanks for your help so far. If I go with your plan A of just modifying drs_exam.cpp, is there a quick way to get it to save the data from the wave, like how osci.cpp spits out an xml file? (Ignoring the cascading aspect for now)

Thanks again :)

/Jill

Well, you have to learn C programming, I won't do it for you. drs_exam.cpp contains already code to write to the ASCII file data.txt, so you just can use that or modify it to your needs.

/Stefan

 Ha! So then the answer is no, there isn't a ready made function/method to pull out the timing and voltage,  like how it was done in osci.cpp. That's all I wanted to know. (Not whether you would write it for me! Only trying to save time!) Thanks!

/Jill

You misunderstood. The answer is yes. drs_exam.cpp contains already code to write to an ASCII file. If you actually look into the file, you see:

   f = fopen("data.txt", "w");
   ...
   b->GetTime(0, b->GetTriggerCell(0), time_array);
   ...
   b->GetWave(0, 0, wave_array[0]);
   ...
   fprintf(f, "%5.2f %6.2f\n", time_array[i], wave_array[0][i]);

which actually pulls out the timing and voltage and writes it to the file.

 

 

  649   Wed Dec 20 16:30:45 2017 Yoni Shercascading -- DRS4 Osci.cpp & DRS.cpp

Hi, 

The board is modified (and checks out with the DRSScope program). Could you please point me to the drs_exam_2048.cpp file? I can't seem to fine the most up-to-date git repository....

 

Thanks, 

Yoni

Stefan Ritt wrote:

First you need a board which is modified in hardware to support channel cascading. Basically there are internal resistors which connect each input connector to two channels. You have to specify this when you order the board. Then you can use the new drs_exam_2048.cpp file contains in the git repository which correctly configures and reads out the board in two-channel cascading mode. Putting all 8 channels together is not supported by the evaluation boards.

Stefan

Yoni Sher wrote:

Hi, 

I'm trying to do the same thing (get 1 channel with 8192 bins), but I'm having some trouble with it. When I call SetChannelConfig(0, 8, 1) as suggeted, I get output that looks like noise on all readouts. Could you please explain what is supposed to happen in this case? 

I will happily write the code to combine the channels correctly (and debug it) if I can understand what needs to be done. 

(I should mention that my primary concern is a MATLAB interface which I have already written and don't mind sharing when it's complete). 

 

Yoni Sher

Stefan Ritt wrote:

 

Jill Russek wrote:

 

Stefan Ritt wrote:

 

Jill Russek wrote:

 Stefan, thanks for your help so far. If I go with your plan A of just modifying drs_exam.cpp, is there a quick way to get it to save the data from the wave, like how osci.cpp spits out an xml file? (Ignoring the cascading aspect for now)

Thanks again :)

/Jill

Well, you have to learn C programming, I won't do it for you. drs_exam.cpp contains already code to write to the ASCII file data.txt, so you just can use that or modify it to your needs.

/Stefan

 Ha! So then the answer is no, there isn't a ready made function/method to pull out the timing and voltage,  like how it was done in osci.cpp. That's all I wanted to know. (Not whether you would write it for me! Only trying to save time!) Thanks!

/Jill

You misunderstood. The answer is yes. drs_exam.cpp contains already code to write to an ASCII file. If you actually look into the file, you see:

   f = fopen("data.txt", "w");
   ...
   b->GetTime(0, b->GetTriggerCell(0), time_array);
   ...
   b->GetWave(0, 0, wave_array[0]);
   ...
   fprintf(f, "%5.2f %6.2f\n", time_array[i], wave_array[0][i]);

which actually pulls out the timing and voltage and writes it to the file.

 

 

 

  650   Wed Dec 20 22:14:35 2017 Stefan Rittcascading -- DRS4 Osci.cpp & DRS.cpp

https://bitbucket.org/ritt/drs4eb

 

  271   Tue Jul 9 11:40:00 2013 Dmitry Hitscannot save in binary format

Hi,

I would like to save the waveform in a binary format. When I click Save then change format from xml to dat in the menu. I still get xml format but with dat extension.

what I am missing?

Thank you,

Dmitry.

 

  272   Tue Jul 9 12:23:06 2013 Stefan Rittcannot save in binary format

Dmitry Hits wrote:

Hi,

I would like to save the waveform in a binary format. When I click Save then change format from xml to dat in the menu. I still get xml format but with dat extension.

what I am missing?

Thank you,

Dmitry.

Version 4.0.1 has a problem there. Please use 4.0.0. If you can compile the program yourself, just change this line:

--- DOFrame.cpp (revision 20656)
+++ DOFrame.cpp (revision 20655)
@@ -517,7 +517,7 @@
       if (!filename.empty()) {
          m_btSave->SetLabel(_T("Close"));
          m_btSave->SetToolTip(_T("Stop saving waveforms"));
-         if (filename.Find(_T(".")) != wxNOT_FOUND) {
+         if (filename.Find(_T(".xml")) != wxNOT_FOUND) {
             m_WFfd = 0;
             m_WFFile = mxml_open_file(filename.char_str());
             if (m_WFFile)

 

  273   Tue Jul 9 14:00:49 2013 Dmitry Hitscannot save in binary format

Stefan Ritt wrote:

Dmitry Hits wrote:

Hi,

I would like to save the waveform in a binary format. When I click Save then change format from xml to dat in the menu. I still get xml format but with dat extension.

what I am missing?

Thank you,

Dmitry.

Version 4.0.1 has a problem there. Please use 4.0.0. If you can compile the program yourself, just change this line:

--- DOFrame.cpp (revision 20656)
+++ DOFrame.cpp (revision 20655)
@@ -517,7 +517,7 @@
       if (!filename.empty()) {
          m_btSave->SetLabel(_T("Close"));
          m_btSave->SetToolTip(_T("Stop saving waveforms"));
-         if (filename.Find(_T(".")) != wxNOT_FOUND) {
+         if (filename.Find(_T(".xml")) != wxNOT_FOUND) {
             m_WFfd = 0;
             m_WFFile = mxml_open_file(filename.char_str());
             if (m_WFFile)

 

 Thanks that fixed it!

Dmitry

  234   Mon Apr 8 18:11:02 2013 Dmitry Hitsbinary to root

 Hi,

 

Does anyone has a program that converts a binary file from drsosc  output to a ROOT tree format?

 

Thank you,

 

Dmitry.

  366   Tue Aug 26 14:16:26 2014 Roman Gredigbinary files with more than 4 drs board ver. 5.0.2
Dear Stefan

after having some problems with writing binary files with more than 4 drs boards (in multiboard-mode) I might 
have found the solution.
In the file src/Osci.cpp at line 838 is: 
unsigned char buffer[100000];

If I understand the binary format right, this works only with up to four boards. With the maximum number of 
boards in your specification (16 boards) and all channels switched on on all boards this array needs to have 
about 400000 entries (for the first event, where the time information is written too).

Could you please cross-check that?

Thank you very much!
Cheers,
Roman
  390   Thu Oct 16 16:15:16 2014 Stefan Rittbinary files with more than 4 drs board ver. 5.0.2
> Dear Stefan
> 
> after having some problems with writing binary files with more than 4 drs boards (in multiboard-mode) I might 
> have found the solution.
> In the file src/Osci.cpp at line 838 is: 
> unsigned char buffer[100000];
> 
> If I understand the binary format right, this works only with up to four boards. With the maximum number of 
> boards in your specification (16 boards) and all channels switched on on all boards this array needs to have 
> about 400000 entries (for the first event, where the time information is written too).
> 
> Could you please cross-check that?
> 
> Thank you very much!
> Cheers,
> Roman

This problem has been fixed in software version 5.0.3

/Stefan
  363   Wed Aug 13 20:17:19 2014 Roman Gredigbinary files time calibration header in drs-5.0.2
Dear Stefan

I have a problem considering binary data files.
Usually binary files start with TIME... (the time calibration header). But I observed the following reproducible problem.
1. Start to save a binary file (e.g. 001.dat) with 1000000 events. 
2. Hit the close button before this limit has reached. (so far the binary files seems to be ok) 
3. Start to save again a file with the SAME filename (and agree to replace the already existing it)
If I do it like this, the file has no time information anymore and starts directly with EHDR.

could it be that the m_evSerial counter is not reset in this specific situation?

Cheers,
Roman
  391   Thu Oct 16 16:16:12 2014 Stefan Rittbinary files time calibration header in drs-5.0.2
> Dear Stefan
> 
> I have a problem considering binary data files.
> Usually binary files start with TIME... (the time calibration header). But I observed the following reproducible problem.
> 1. Start to save a binary file (e.g. 001.dat) with 1000000 events. 
> 2. Hit the close button before this limit has reached. (so far the binary files seems to be ok) 
> 3. Start to save again a file with the SAME filename (and agree to replace the already existing it)
> If I do it like this, the file has no time information anymore and starts directly with EHDR.
> 
> could it be that the m_evSerial counter is not reset in this specific situation?
> 
> Cheers,
> Roman

This problem has also been fixed in version 5.0.3

/Stefan
  479   Mon Feb 29 12:58:17 2016 Dmitry Philippovbaseline shift

Hello! My name is Dmitry. I am from SiPM Lab is NRNU MEPhI (Russia, Moscow). We bought DRS4 evaluation board V5 with firmware 21305. We use 5.0.4 build 21911 2015-11-23 software version (and before that we used 5.0.3 build 21508, 2014-10-15) with Windows 7 32bit.

We observe some strange behaviour. When we save waveforms (in xml or binary data) we see that some of them have the baseline shifted of about -5 mV.

The first picture (pic1) is 1000 waveforms which were glued in one. It is clearly see that baseline quite often has the shift.

The same effect can be seen without saving (writting): rarely when we use normal or auto trigger mode (pic3), and always in single trigger mode (pic2).

The images are attached.

Do you have any idea how it can be fixed?

 

Thanks, Dmitry.

 

  480   Mon Feb 29 13:09:29 2016 Stefan Rittbaseline shift

The baseline shift comes from some instable power supply inside the evaluation board which cannot be controlled to the mV level. In a real measurement, you usually get an additional baseline shift due to some environmental electromagnetic interferences, such as a 50 Hz signal. People fix this shifting baseline by always aquiring a small portion (10-20 samples) of the baseline before any signal from a particle detector. The signal is then corrected event-by-event by subtracting the baseline from each waveform. By doing that, you fix not only the 50 Hz noise, but also the shifting baseline you mention.

Stefan

Dmitry Philippov wrote:

Hello! My name is Dmitry. I am from SiPM Lab is NRNU MEPhI (Russia, Moscow). We bought DRS4 evaluation board V5 with firmware 21305. We use 5.0.4 build 21911 2015-11-23 software version (and before that we used 5.0.3 build 21508, 2014-10-15) with Windows 7 32bit.

We observe some strange behaviour. When we save waveforms (in xml or binary data) we see that some of them have the baseline shifted of about -5 mV.

The first picture (pic1) is 1000 waveforms which were glued in one. It is clearly see that baseline quite often has the shift.

The same effect can be seen without saving (writting): rarely when we use normal or auto trigger mode (pic3), and always in single trigger mode (pic2).

The images are attached.

Do you have any idea how it can be fixed?

 

Thanks, Dmitry.

 

 

  863   Tue Feb 15 11:59:22 2022 Alex Myczkoapt install drs4eb

drs4b is now officially on these distributions:

https://repology.org/project/drs4eb/versions

enjoy

  260   Mon Jun 10 14:09:13 2013 tmiron alonadd an average ability to the Scope

Stefan Ritt wrote:

tmiron alon wrote:

Hallo,
I'm using DRS4 Evaluation Board Rev 4.0 and I'm trying to change the output of the samples to be an average of  #  measurements (1000 or even more)
during the process I have encountered some difficulties I hope you will be able to help me  with:

1. the DRS chip have 8 channels but the Evaluation board have only 4 channels. does the default mode of the DRS in the Evaluation Board is 1024 bins for each channel or 2048?

2. in the readout mode, does it samples all the 1024 bins waveform from a channel and then move to the next one, or after each bin it move to the next channel?

3. In the file "drs4_eval4_app.vhd", I have a problem finding the names of the signals that represents the registers bits which tell me what is the number of the bin (1-1024) the ADC is reading from the DRS, and the signals

that represents registers A0-A3. can you send me their names? 

 

4. In another matter- is the -0.5V to 0.5V is the  upper and lower  limit of the input (or just a working range), and if not what is the limit for AC?  is there a fuse on the board in case of overload from the input? (I didn't see  it in the User's Manual, but I didn't know if you will mention it there in case there is one).

thanks in advance and have a nice day,

Tmiron

1. All 8 channels are read out, but only 4 are displayed in the oscilloscope.

2. It reads all 1024 bins from a channel, then switch to the next channel.

3. The ADC readout happens in lines 1576+. The register for the sample count is drs_sample_count, and the signal for the address is drs_addr.

4. The evaluation board manual explicitly mentions the maximum allowed input range on page 5.

/Stefan 

 Hi Stefan,

I'm trying to add the averaging feature to the oscilloscope instead. I have a basic knowledge in C++ so I'm having problem finding the initial place (places) of the data acquisition. furthermore, I saw you already made an averaging possibility for some of the features in the program at the measure window.
Can you please tell we in which of the programs of the Scope (and in what line if possible) can I find the initial\main data acquisition so I could follow it from there, and where is the location of the averaging function you already made?

have a nice week,

Tmiron

  261   Mon Jun 10 16:24:21 2013 Stefan Rittadd an average ability to the Scope

tmiron alon wrote:

Stefan Ritt wrote:

tmiron alon wrote:

Hallo,
I'm using DRS4 Evaluation Board Rev 4.0 and I'm trying to change the output of the samples to be an average of  #  measurements (1000 or even more)
during the process I have encountered some difficulties I hope you will be able to help me  with:

1. the DRS chip have 8 channels but the Evaluation board have only 4 channels. does the default mode of the DRS in the Evaluation Board is 1024 bins for each channel or 2048?

2. in the readout mode, does it samples all the 1024 bins waveform from a channel and then move to the next one, or after each bin it move to the next channel?

3. In the file "drs4_eval4_app.vhd", I have a problem finding the names of the signals that represents the registers bits which tell me what is the number of the bin (1-1024) the ADC is reading from the DRS, and the signals

that represents registers A0-A3. can you send me their names? 

 

4. In another matter- is the -0.5V to 0.5V is the  upper and lower  limit of the input (or just a working range), and if not what is the limit for AC?  is there a fuse on the board in case of overload from the input? (I didn't see  it in the User's Manual, but I didn't know if you will mention it there in case there is one).

thanks in advance and have a nice day,

Tmiron

1. All 8 channels are read out, but only 4 are displayed in the oscilloscope.

2. It reads all 1024 bins from a channel, then switch to the next channel.

3. The ADC readout happens in lines 1576+. The register for the sample count is drs_sample_count, and the signal for the address is drs_addr.

4. The evaluation board manual explicitly mentions the maximum allowed input range on page 5.

/Stefan 

 Hi Stefan,

I'm trying to add the averaging feature to the oscilloscope instead. I have a basic knowledge in C++ so I'm having problem finding the initial place (places) of the data acquisition. furthermore, I saw you already made an averaging possibility for some of the features in the program at the measure window.
Can you please tell we in which of the programs of the Scope (and in what line if possible) can I find the initial\main data acquisition so I could follow it from there, and where is the location of the averaging function you already made?

have a nice week,

Tmiron

The averaging possibility in the measure window is just a "place holder" for future extensions, which are not yet implemented.

A good point to implement averaging is in the function Osci::ReadWaveforms() in Osci.cpp.

/Stefan 

  263   Thu Jul 4 08:32:11 2013 tmiron alonadd an average ability to the Scope

Stefan Ritt wrote:

tmiron alon wrote:

Stefan Ritt wrote:

tmiron alon wrote:

Hallo,
I'm using DRS4 Evaluation Board Rev 4.0 and I'm trying to change the output of the samples to be an average of  #  measurements (1000 or even more)
during the process I have encountered some difficulties I hope you will be able to help me  with:

1. the DRS chip have 8 channels but the Evaluation board have only 4 channels. does the default mode of the DRS in the Evaluation Board is 1024 bins for each channel or 2048?

2. in the readout mode, does it samples all the 1024 bins waveform from a channel and then move to the next one, or after each bin it move to the next channel?

3. In the file "drs4_eval4_app.vhd", I have a problem finding the names of the signals that represents the registers bits which tell me what is the number of the bin (1-1024) the ADC is reading from the DRS, and the signals

that represents registers A0-A3. can you send me their names? 

 

4. In another matter- is the -0.5V to 0.5V is the  upper and lower  limit of the input (or just a working range), and if not what is the limit for AC?  is there a fuse on the board in case of overload from the input? (I didn't see  it in the User's Manual, but I didn't know if you will mention it there in case there is one).

thanks in advance and have a nice day,

Tmiron

1. All 8 channels are read out, but only 4 are displayed in the oscilloscope.

2. It reads all 1024 bins from a channel, then switch to the next channel.

3. The ADC readout happens in lines 1576+. The register for the sample count is drs_sample_count, and the signal for the address is drs_addr.

4. The evaluation board manual explicitly mentions the maximum allowed input range on page 5.

/Stefan 

 Hi Stefan,

I'm trying to add the averaging feature to the oscilloscope instead. I have a basic knowledge in C++ so I'm having problem finding the initial place (places) of the data acquisition. furthermore, I saw you already made an averaging possibility for some of the features in the program at the measure window.
Can you please tell we in which of the programs of the Scope (and in what line if possible) can I find the initial\main data acquisition so I could follow it from there, and where is the location of the averaging function you already made?

have a nice week,

Tmiron

The averaging possibility in the measure window is just a "place holder" for future extensions, which are not yet implemented.

A good point to implement averaging is in the function Osci::ReadWaveforms() in Osci.cpp.

/Stefan 

Hi Stefan,

I have been trying to compile my changes to the program, but have a problem with the "wxWidgets". can you tell me which version of the wxWidgets and which c++ program did you use to built the drs4's scope program?

I'm using "microsoft visual c++ 2010 express", and the closest I got to compile something was with the wxWidgets 2.8.12 version (It's tell me I'm missing the file "wxmsw28d_core.lib" although I built it).

have a nice day,

Tmiron.

ELOG V3.1.5-fe60aaf