Demo Discussion
Forum Config Examples Contributions Vulnerabilities
  Discussion forum about ELOG  Not logged in ELOG logo
icon5.gif   Can anyone help compile ELog 2.8.0 on SunOS 5.11?, posted by Morion Black on Wed Oct 27 23:43:37 2010 
    icon2.gif   Re: Can anyone help compile ELog 2.8.0 on SunOS 5.11?, posted by Stefan Ritt on Tue Nov 16 10:00:48 2010 crypt.c
Message ID: 66938     Entry time: Tue Nov 16 10:00:48 2010     In reply to: 66921
Icon: Reply  Author: Stefan Ritt  Author Email: stefan.ritt@psi.ch 
Category: Question  OS: Other  ELOG Version: 2.8.0 
Subject: Re: Can anyone help compile ELog 2.8.0 on SunOS 5.11? 

Morion Black wrote:

 I have server with SunOS 5.11:

 

uname -a

SunOS *** 5.11 snv_134 i86pc i386 i86pc

 

when I try to compile ELog I get error:

 

gmake

gcc  -DHAVE_SSL -w -c -o crypt.o src/crypt.c

gcc  -DHAVE_SSL -I../mxml -o elog src/elog.c crypt.o -lsocket -lnsl -lssl

Undefined                       first referenced

 symbol                             in file

MAX                                 crypt.o

MIN                                 crypt.o

mempcpy                             crypt.o

_ast_strtoul                        crypt.o

_ast_realloc                        crypt.o

ld: fatal: symbol referencing errors. No output written to elog

collect2: ld returned 1 exit status

gmake: *** [elog] Error 1

 
 
Can anyone help to compile Elog?

 

 

The crypt.c file is not from me, so there might be some issues on other OSes. I defined now at least MIN/MAX by hand, and also removed mempcpy. The new version is attached. Can you try again to compile it? The strtoul and realloc are nomal C functions, maybe you have to add some other libraries for linking, but I'm not an expert for SunOS. 

Attachment 1: crypt.c  18 kB  | Hide | Hide all
/* SHA256-based Unix crypt implementation.
   Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>.
   Adapted for MS Windows by Stefan Ritt <stefan.ritt@psi.ch> 
   $Id: crypt.c 2334 2010-11-16 08:59:45Z ritt $ */

#ifdef _MSC_VER
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define __alignof__(x) sizeof(x)
#define alloca(x) malloc(x)
#define ERANGE 34

typedef unsigned int uint32_t;
#else
#include <errno.h>
#include <limits.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/param.h>
#include <sys/types.h>
#endif

#ifndef MAX
#define MAX(x,y) ((x)>(y)?(x):(y))
#define MIN(x,y) ((x)<(y)?(x):(y))
#endif
      
/* Structure to save state of computation between the single steps.  */
struct sha256_ctx {
   uint32_t H[8];

   uint32_t total[2];
   uint32_t buflen;
   char buffer[128];            /* NB: always correctly aligned for uint32_t.  */
};


#if __BYTE_ORDER == __LITTLE_ENDIAN
# define SWAP(n) \
    (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
#else
# define SWAP(n) (n)
#endif


/* This array contains the bytes used to pad the buffer to the next
   64-byte boundary.  (FIPS 180-2:5.1.1)  */
static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ...  */  };


/* Constants for SHA256 from FIPS 180-2:4.2.2.  */
static const uint32_t K[64] = {
   0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
   0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
   0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
   0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
   0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
   0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
   0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
   0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
   0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
   0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
   0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
   0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
   0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
   0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
   0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
   0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};


/* Process LEN bytes of BUFFER, accumulating context into CTX.
   It is assumed that LEN % 64 == 0.  */
static void sha256_process_block(const void *buffer, size_t len, struct sha256_ctx *ctx)
{
   const uint32_t *words = buffer;
   size_t nwords = len / sizeof(uint32_t);
   uint32_t a = ctx->H[0];
   uint32_t b = ctx->H[1];
   uint32_t c = ctx->H[2];
   uint32_t d = ctx->H[3];
   uint32_t e = ctx->H[4];
   uint32_t f = ctx->H[5];
   uint32_t g = ctx->H[6];
   uint32_t h = ctx->H[7];

   /* First increment the byte count.  FIPS 180-2 specifies the possible
      length of the file up to 2^64 bits.  Here we only compute the
      number of bytes.  Do a double word increment.  */
   ctx->total[0] += len;
   if (ctx->total[0] < (int) len)
      ++ctx->total[1];

   /* Process all bytes in the buffer with 64 bytes in each round of
      the loop.  */
   while (nwords > 0) {
      uint32_t W[64];
      unsigned int t;
      uint32_t a_save = a;
      uint32_t b_save = b;
      uint32_t c_save = c;
      uint32_t d_save = d;
      uint32_t e_save = e;
      uint32_t f_save = f;
      uint32_t g_save = g;
      uint32_t h_save = h;

      /* Operators defined in FIPS 180-2:4.1.2.  */
#define Ch(x, y, z) ((x & y) ^ (~x & z))
#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
#define S0(x) (CYCLIC (x, 2) ^ CYCLIC (x, 13) ^ CYCLIC (x, 22))
#define S1(x) (CYCLIC (x, 6) ^ CYCLIC (x, 11) ^ CYCLIC (x, 25))
#define R0(x) (CYCLIC (x, 7) ^ CYCLIC (x, 18) ^ (x >> 3))
#define R1(x) (CYCLIC (x, 17) ^ CYCLIC (x, 19) ^ (x >> 10))

      /* It is unfortunate that C does not provide an operator for
         cyclic rotation.  Hope the C compiler is smart enough.  */
#define CYCLIC(w, s) ((w >> s) | (w << (32 - s)))

      /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2.  */
      for (t = 0; t < 16; ++t) {
         W[t] = SWAP(*words);
         ++words;
      }
      for (t = 16; t < 64; ++t)
         W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16];

      /* The actual computation according to FIPS 180-2:6.2.2 step 3.  */
      for (t = 0; t < 64; ++t) {
         uint32_t T1 = h + S1(e) + Ch(e, f, g) + K[t] + W[t];
         uint32_t T2 = S0(a) + Maj(a, b, c);
         h = g;
         g = f;
         f = e;
         e = d + T1;
         d = c;
         c = b;
         b = a;
         a = T1 + T2;
      }

      /* Add the starting values of the context according to FIPS 180-2:6.2.2
         step 4.  */
      a += a_save;
      b += b_save;
      c += c_save;
      d += d_save;
      e += e_save;
      f += f_save;
      g += g_save;
      h += h_save;

      /* Prepare for the next round.  */
      nwords -= 16;
   }

   /* Put checksum in context given as argument.  */
   ctx->H[0] = a;
   ctx->H[1] = b;
   ctx->H[2] = c;
   ctx->H[3] = d;
   ctx->H[4] = e;
   ctx->H[5] = f;
   ctx->H[6] = g;
   ctx->H[7] = h;
}


/* Initialize structure containing state of computation.
   (FIPS 180-2:5.3.2)  */
static void sha256_init_ctx(struct sha256_ctx *ctx)
{
   ctx->H[0] = 0x6a09e667;
   ctx->H[1] = 0xbb67ae85;
   ctx->H[2] = 0x3c6ef372;
   ctx->H[3] = 0xa54ff53a;
   ctx->H[4] = 0x510e527f;
   ctx->H[5] = 0x9b05688c;
   ctx->H[6] = 0x1f83d9ab;
   ctx->H[7] = 0x5be0cd19;

   ctx->total[0] = ctx->total[1] = 0;
   ctx->buflen = 0;
}


/* Process the remaining bytes in the internal buffer and the usual
   prolog according to the standard and write the result to RESBUF.

   IMPORTANT: On some systems it is required that RESBUF is correctly
   aligned for a 32 bits value.  */
static void *sha256_finish_ctx(struct sha256_ctx *ctx, void *resbuf)
{
   /* Take yet unprocessed bytes into account.  */
   uint32_t bytes = ctx->buflen;
   size_t pad;
   unsigned int i;

   /* Now count remaining bytes.  */
   ctx->total[0] += bytes;
   if (ctx->total[0] < bytes)
      ++ctx->total[1];

   pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
   memcpy(&ctx->buffer[bytes], fillbuf, pad);

   /* Put the 64-bit file length in *bits* at the end of the buffer.  */
   *(uint32_t *) & ctx->buffer[bytes + pad + 4] = SWAP(ctx->total[0] << 3);
   *(uint32_t *) & ctx->buffer[bytes + pad] = SWAP((ctx->total[1] << 3) | (ctx->total[0] >> 29));

   /* Process last bytes.  */
   sha256_process_block(ctx->buffer, bytes + pad + 8, ctx);

   /* Put result from CTX in first 32 bytes following RESBUF.  */
   for (i = 0; i < 8; ++i)
      ((uint32_t *) resbuf)[i] = SWAP(ctx->H[i]);

   return resbuf;
}


static void sha256_process_bytes(const void *buffer, size_t len, struct sha256_ctx *ctx)
{
   /* When we already have some bits in our internal buffer concatenate
      both inputs first.  */
   if (ctx->buflen != 0) {
      size_t left_over = ctx->buflen;
      size_t add = 128 - left_over > len ? len : 128 - left_over;

      memcpy(&ctx->buffer[left_over], buffer, add);
      ctx->buflen += add;

      if (ctx->buflen > 64) {
         sha256_process_block(ctx->buffer, ctx->buflen & ~63, ctx);

         ctx->buflen &= 63;
         /* The regions in the following copy operation cannot overlap.  */
         memcpy(ctx->buffer, &ctx->buffer[(left_over + add) & ~63], ctx->buflen);
      }

      buffer = (const char *) buffer + add;
      len -= add;
   }

   /* Process available complete blocks.  */
   if (len >= 64) {
/* To check alignment gcc has an appropriate operator.  Other
   compilers don't.  */
#if __GNUC__ >= 2
# define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint32_t) != 0)
#else
# define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint32_t) != 0)
#endif
      if (UNALIGNED_P(buffer))
         while (len > 64) {
            sha256_process_block(memcpy(ctx->buffer, buffer, 64), 64, ctx);
            buffer = (const char *) buffer + 64;
            len -= 64;
      } else {
         sha256_process_block(buffer, len & ~63, ctx);
         buffer = (const char *) buffer + (len & ~63);
         len &= 63;
      }
   }

   /* Move remaining bytes into internal buffer.  */
   if (len > 0) {
      size_t left_over = ctx->buflen;

      memcpy(&ctx->buffer[left_over], buffer, len);
      left_over += len;
      if (left_over >= 64) {
         sha256_process_block(ctx->buffer, 64, ctx);
         left_over -= 64;
         memcpy(ctx->buffer, &ctx->buffer[64], left_over);
      }
      ctx->buflen = left_over;
   }
}


/* Define our magic string to mark salt for SHA256 "encryption"
   replacement.  */
static const char sha256_salt_prefix[] = "$5$";

/* Prefix for optional rounds specification.  */
static const char sha256_rounds_prefix[] = "rounds=";

/* Maximum salt string length.  */
#define SALT_LEN_MAX 16
/* Default number of rounds if not explicitly specified.  */
#define ROUNDS_DEFAULT 5000
/* Minimum number of rounds.  */
#define ROUNDS_MIN 1000
/* Maximum number of rounds.  */
... 275 more lines ...
ELOG V3.1.5-fe60aaf