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Abstract. MEG (µ+ → e
+

γ) is an experiment dedicated to the search for the µ
+ → e

+
γ decay that is

strongly suppressed in the Standard Model, but allowed in many alternative models and therefore very
sensitive to new physics. The offline software is based on two frameworks. The first is REM in FORTRAN
77, which is used for event generation and the detector simulation package GEM. The other is ROME
in C++, used for the readout electronics simulation Bartender and for the reconstruction and analysis
program Analyzer. Event display in the simulation is based on GEANT3 graphic libraries and in the
reconstruction on ROOT graphic libraries. Data are stored in different formats at various stages of the
processing. The frameworks include utilities for I/O, database access and format conversion transparent
to the user.

1 Introduction

The MEG experiment at Paul Scherrer Institute (PSI) in Switzerland is searching for the rare decay µ
+

→ e
+
γ,

employing a very intense (3× 107s−1) µ
+ beam, which is stopped in a thin target at the center of the detector. MEG

is a small-size collaboration (≈ 50–60 physicists at any time) with a life span of about 10 years.
The collaboration started the software development in 2002 after a few years of prototype studies, with the goal

of being ready for data taking in a technical run foreseen after 3 years. Since the beginning, the tight time schedule
and the limited human resource available, in particular in the offline architecture group, emphasized the importance
of reusing the software developed during the prototype studies and exploiting the existing expertise. Therefore great
care has been devoted to provide a simple system that hides implementation details to the average programmer. That
has allowed many members of the collaboration with limited programming skills to contribute to the development of
the software of the experiment.

The detector consists of a Liquid Xenon Calorimeter for measuring the γ momentum vector and timing and of a
spectrometer consisting of a set of drift chambers and of a timing counter embedded in a strong gradient magnetic
field generated by a superconducting magnet (COBRA) for the measurement of e

+ kinematic variables. A sketch of
the apparatus is shown in fig. 1. The waveforms from readout electronics are digitized at a ≈ 1GHz frequency and
stored in the output to optimize time resolution [1].

Waveform data is encoded in a format developed in the MEG group. The data of each channel consist of a header
and binary waveforms. Each header contains a hardware channel number and parameters needed to decode data. The
data can be encoded in different ways depending on the required compression factor, precision and characteristics
of waveforms of each subdetector. The experiment totals ≈ 3000 channels and a reduction by a factor of 3 in data
size is achieved applying zero suppression, waveform resampling or restricting the recorded region depending on the
subdetector.

The typical DAQ event rate is ≈ 6 Hz. Data size is about 4.8 GB per run for 2000 events. Data files are compressed
in the offline cluster by a factor of 2. Event size after the compression is 1.3 MB/event.
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Fig. 1. The MEG experimental setup.

During ≈ 3 months in 2010, ≈ 21 × 106
µ

+
→ e

+
γ triggers were collected for a total of 60 TB of data written on

disk, half of which from physics runs and the rest from calibration runs.

The software requirements include the simulation of the generation of signal and background events, of their
interaction with the detector and of the readout, the reconstruction from raw data, real or simulated, to high-level
objects, e.g., tracks and photons as well as providing an analysis environment.

The average time for simulating the interaction of a signal event in the detector is 5.8 s/event, while the average
time for simulating the readout electronics is 1.2 s/event. The average time for the reconstruction is 1.6 s/event.

The software organization designed to comply with these requirements is presented.
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Fig. 2. Relations between MEG software components.

2 The MEG software structure

The MEG offline software consists mainly of GEM (event generation, particle tracking and detector simulation),
Bartender (event mixing and electronics simulation) and Analyzer (reconstruction and analysis of experiment and
simulation data). The relations between the various software components are shown in fig. 2.

The parameters in use in the programs are managed through a common SQL database.
The MEG DAQ system is based on MIDAS [2]; raw experimental data are therefore saved as binary files in the

native format of the system. Briefly, the MIDAS format consists in an event header followed by MIDAS banks. Each
bank is defined by a 4-character name and contains a description of the unique data type and an array of data.

The DAQ system inserts run information and default analysis parameters into the database when a run is taken.
These files are read by Analyzer that reconstructs the events and produces two files: a rec ROOT [3,4] file, which

contains a ROOT Tree and a histogram file for quick data checks. Before Analyzer starts a run, analysis parameters
are read from the database. The analysis parameters (geometry, calibration etc.) can be changed later by users and
data can be reprocessed with the updated parameters. If necessary, Analyzer copies raw data of selected events (cut
for physics analysis) into raw ROOT files for future reprocessing.

The simulation program GEM, steered by configuration files created by the DB2Cards program by reading the
database, generates various types of events that are propagated in the detector. It is based on GEANT3 and CERNLIB
and outputs data in exchange ZEBRA format [5]. Bartender reads those files and simulates the readout electronics
to convert hits into waveforms. The simulated waveforms are written in raw ROOT files whose bank structure is the
same as experimental data in MIDAS files. In sim files simulation, specific variables, such as kinematics of generated
particles and true hit information, are saved. Analyzer reconstructs events from raw files using the same algorithms
as for the experimental data. High-level physics analysis is also realized within Analyzer.

Version control is managed by the Subversion [6] package.

3 REM: a FORTRAN 77 framework

As anticipated above, the technical choices in designing the offline architecture were driven by considerations about
the time schedule, the manpower and the technical skills available in the collaboration at the start of the project. The
existence of important fragments of simulation code developed in FORTRAN 77 and GEANT3 during the prototype
phase at the time of the choice motivated the collaboration to retain the programming language and the library for
the simulation of the experiment.

Nevertheless, the simulation software was organized following a modern programming paradigm, that is using an
Object-Oriented (OO) approach organized in a framework [7].
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3.1 Implementation of a FORTRAN 77 framework

The detector simulation section GEM of the MEG software is written in FORTRAN 77, that was designed for
procedure-oriented structured programming, not for OO programming.

Nevertheless, a programming paradigm can be implemented in a variety of programming languages, even not
designed for it. A limited but satisfactory support to the OO paradigm is within reach also in FORTRAN 77 on the
basis of the following list of approximate equivalences between procedure-oriented and OO concepts:

– Class ↔ Library;
– Class data ↔ Data structure (FORTRAN 77 Common block);
– Class interface ↔ Set of library routines;
– Base Class ↔ Module standardization;
– Virtual Class ↔ Alternate choice of libraries.

3.2 Modules

The Module is the basic unit manipulated by the framework that corresponds to an OO class. Each Module is
implemented concretely in a library. There are different types of Modules, that can be classified as folows:

– Basic Module: empty Module.
– Steerable Module: Module steerable by configuration files (cards).
– Data Module: contains only data.
– Algorithm Module: implements an algorithm using other Modules.
– Service Module: provides interface to external libraries.

These types share a common set of routines and differ by additional functionalities depending on the Module type
implementing the OO paradigm of class hierarchy.

3.3 The framework: REM

The framework is a Module with an event loop. The Modules associated to the framework are accessed in sequence
by calling their routines in the corresponding framework routines.

Three module are provided by default in REM:

– Steering cards: FFREAD package.
– I/O: ZEBRA I/O.
– Histogramming: HBOOK package.

The other Modules are project-dependent and their routines are called in the corresponding framework user rou-
tines. These user routines, provided empty by default, are called by the framework routines. They can be overwritten
implementing the OO inheritance mechanism.

4 GEM: the Monte Carlo simulation

The propagation of the µ
+ beam in the last section of the beam line, its interaction in the target, the particle decay

and the propagation and interactions of the decay products in the detector are simulated with a FORTRAN 77 Monte
Carlo program (GEM) based on the GEANT3 package [8]. GEM can generate several event types, such as µ

+
→ e

+
γ

signal (shown in fig. 3), radiative muon decay, Michel muon decay, cosmic ray, alpha source calibration and many
others. GEM incorporates a detailed description of the material and simulates the interactions of the particles in the
detector as well as the response of the sub-detectors up to the readout stage. In particular, the photon propagation in
the Liquid Xenon Calorimeter and in the Timing Counter is simulated in detail.

The program is heavily modularized using the FORTRAN 77 framework REM. This approach simplifies the addition
of new Modules; Modules can be either sub-detector simulation sections or service tools like, e.g., graphics.

Within this approach, the GEANT3 library can be treated as a Module and sequenced like any other module.
GEM is steered by configuration files, called cards, read by the FFREAD package [9], that is available in REM.

These cards can be generated through the DB2Cards that is a ROME based framework. DB2Cards reads parameters
from the database and output FFREAD cards, one for each Module, under the control of a XML configuration file.
This file permits to select the simulation configuration, e.g., year dependent or calibration setups, that are maintained
in the database.
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Fig. 3. A µ
+ → e

+
γ simulated event: the e

+ track is in red with hits in drift chambers and timing counter in violet, red and
blue, the γ track in blue with hits in the Liquid Xenon Calorimeter in cyan.

The most natural choice for the format of the GEM output files is ZEBRA. Potential disadvantages of this approach
are that the manipulation of ZEBRA banks is not user friendly, error prone and requires a significant knowledge of the
package. A solution to these problems consists in manipulating only variables in common blocks in the code and then
mapping these variables into the output ZEBRA banks. This is done automatically by providing a bank description
based on the DZDOC format [5] and generating the following routines for each bank xxxx through a Perl [10] script:

get xxxx fetch the bank link,
print xxxx print out of the bank,
build xxxx fill the bank with the variables in common block (before writing out),
fill xxxx fill the common block variables with bank content (after reading in).

GEM provides for each Module yyyy the routines fill(build)yyyyrunheader and fill(build)yyyyeve
that call all the corresponding routines of the banks related to the module. GEM provides also the routines
fill(build)gemrunheader and fill(build)gemeve that call the corresponding routines for all the Modules.

The buildgemrunheader is called once per run and buildgemeve is called once per event to build the banks from
the variables in common blocks before calling the I/O ZEBRA routines in REM.

5 The database

Run-dependent information such as geometry, calibrations and analysis parameters are stored in a relational database,
used for the DAQ frontend, analysis and simulation. Online data logger inserts immediately an entry into the database
when a run is taken. A run can be processed by Analyzer with the default settings and reprocessed later with
improved calibration constants after modifying the database. For simulation, the dedicated program DB2Cards reads
the database and write the FFREAD cards required by GEM for all the configurations required. Therefore, all packages
use consistently a common database.
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Fig. 4. Components in the ROME environment (a) at build time, and (b) at run time.

For the main database, MySQL [11] is used so that clients can connect over the network. Daily snapshots are taken
in MySQL script format and SQLite [12] format. SQLite is a single-file database; therefore it can be used without
network, and can be used for test purposes by modifying local copies without affecting other users. Information on
all the runs and all the simulation configurations are stored in the database. The MEG database consists of a few
hundreds tables and each has a direct or indirect relation to the mother table RunCatalog so that a run number
suffices to retrieve all the information, and no recompilation or manual modification of configuration files is required
to analyze any run sample. At the end of May 2011, the size of the MySQL database was ≈ 750 MB.

6 ROME: A framework generator

ROME [13,14] is a ROOT-based framework generator for event-based data processing. It has been developed in the
MEG collaboration but has been designed as a general-purpose software so that it can be used for other experiments
too.

The key concept of ROME is to generate most of the code of a project, except the analysis (or simulation)
algorithms.

In general, data processing software consists of three parts: the first is a project-independent part such as, e.g., user
interface, handling of the event loop. The second is a project-dependent part, which can be summarized in a compact
way such as, e.g., data structure and calling sequence of algorithms. The third is a completely project-dependent part
such as, e.g., the implementation of analysis algorithms.

Figure 4 shows the components in the ROME environment. In this environment, the first part is included in the
ROME package, and also the ROOT infrastructure is used. For the second part, a programmer describes the framework
for his/her experiment in a clear and compact way in a XML definition file. Out of this file, ROMEBuilder program
generates all experiment specific classes and modifies the framework. It calls also the make command after the source
code generation; therefore the build procedure shown in fig. 4(a) can be done with a single command. For the third
part, a programmer adds the algorithm code to the pre-generated methods. Further modifications can be done by
editing the definition XML file or by modifying algorithm implementations, then running ROMEBuilder again.

Because of the generation scheme, the amount of hand-written code becomes smaller, and it becomes possible to
start or modify the software without learning the complicated implementations of the framework.

The generated framework is linked with the ROOT libraries; therefore all ROOT classes are available for the analy-
sis. Additional classes written by hand can be also linked. The generated program is steered using a configuration XML
file at run time. An interactive control of the program, for example pausing the event loop and plotting histograms,
is possible.

The following list is part of the items automatically generated by ROME according to a XML definition file:

– Data classes (Folders) with a complete set of methods.

– Algorithm classes (Tasks) with empty methods to be filled by a programmer.

– Visualization classes (Tabs) with empty methods to be filled by a programmer.
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Fig. 5. An example of Folder definition in a XML file (upper) and part of the C++ code generated by ROME (lower).

– Data input classes to read user defined data files with empty methods to be filled by a programmer.

– Code to create and write histograms. The histograms can be filled in user code.

– Code for I/O of TTrees1 into files.

– Code to read and write configuration XML files.

– Code to read and write SQL database. MySQL, PostgreSQL [15] and SQLite are supported and switchable by a
configuration file at run time.

– Code to read MIDAS format files and to connect to MIDAS Online Database System (ODB) to access online data.

– Makefile is automatically generated or updated when new classes are defined by a definition XML.

– HTML document where the description of Tasks and that of each variable in Folders are written. ROOT style
document, like “reference guide” in the ROOT web page can be also generated for user code.

ROME implements the organization commonly used in OO applications in high-energy physics [16]: data objects,
whose function is to store data, are separated from algorithm objects, whose function is to incorporate algorithms.

The former are implemented as a Folder class, the latter as a Task class. Tasks are derived from ROOT TTask;
therefore recursive calling sequence is realized. ROME Folders are derived from ROOT TObject (not from TFolder),
and they can be filled into ROOT TTree as a single object or as an array in ROOT TClonesArray.

For Folders, ROME generates not only the class itself, but also modifies the part of the framework related to the
Folder such as allocation and initialization, adding or setting the address of a branch in a TTree for writing (reading)
the Folder to (from) a file, filling the variables by reading the database at the beginning of a run (if required in XML).

1 TTree is the ROOT implementation of the data structure tree concept.
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Fig. 6. An example of Task definition in a XML file (upper), and part of the C++ code generated by ROME (lower).

Fig. 7. An example of Tree definition in a XML file.

A definition of a Folder reads like the XML document shown in fig. 5 together with part of the C++ code generated
by ROME, according to the definition. This Photon instance has two variables, Energy and Time. The generated class
has these variables as its data members, and Set and Get methods are defined. The framework generates automatically,
for example, 10 instances (the number can be fixed or variable) at the beginning of the program and those instances
are available in the user code out-of-package. For example, GetPhotonAt() and GetEnergy() shown in fig. 6 are
generated according to the description in the XML definition file of the Folder without manual programming. Any
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types of Field, both fundamental and derived, can be added in the Folder structure as far as it is supported by
ROOT dictionary generation (dictionaries are needed for TTree I/O or socket connection over the network).

A definition of an algorithm object, that is a Task, reads like the XML document shown in fig. 6. According to the
definition file, ROME generates header and source files. A generated source file has empty methods, and a programmer
can implement the analysis in it immediately. As an example, in the code in fig. 6, a few lines to access a Folder
are added to the generated file. ROME generates not only the task class itself, but modifies the framework to call it
in an order specified in the definition XML. In this example, a configuration parameter DebugPrint can be changed
using a configuration XML file at run time without re-compile. A function call GetSP()->GetDebugPrint() shown in
the example code is available without any manual programming, and a field to configure the parameter automatically
appears in a configuration XML file after the first use of the file.

The framework outputs one or more TTrees. A programmer can define Trees and add Folders to it as branches in
a XML description file. The framework code is automatically modified; therefore no manual programming is needed
to add branches to be read or written. Figure 7 shows an example of Tree structure.

Output files can be used for an interactive analysis, and further analyzed by ROOT macros.
Output files of each step can be used as input files of the following step; therefore the analysis can be separated

into several steps. For example, in the analysis of MEG, we can save the results of the waveform analysis, which is
the most time-consuming in the chain, and perform reconstructions on this file to improve the algorithm many times
without redoing the waveform analysis.

An interactive mode, which is almost the same as ROOT interactive mode, is also provided. In the interactive
mode or in macros, experiment specific classes are also available in addition to the standard ROOT classes.

ROME also generates a HTML document and a Makefile. The generated framework is already compilable just by
the make command and, after that, is executable.

The generation mechanism is used not only at the beginning of the project, but also during the code development.
For example, a programmer can easily add a new configuration parameter to an existing Task, or add new variables
to a Folder. The code in the framework is automatically modified consistently.

MEG Analyzer consists of about 200 Folder classes and 100 Task classes. The total number of lines in the Analyzer
code is more than one million. 84% of them are either generated by rootcint [3] or ROME, or included in the ROME
package, while the rest was written manually.

7 Readout simulation and event mixing

Following the detector simulation and before the reconstruction and analysis program, an intermediate program, called
Bartender, is required for the processing of Monte Carlo data. This program serves different roles:

– Conversion of ZEBRA files into ROOT files.
– Readout simulation.
– Event mixing.

It reads the GEM output ZEBRA files calling fillgemrunheader once per run and fillgemeve once per event after
calling the I/O ZEBRA routines to fill the variables in FORTRAN common blocks from the banks. These variables
are finally mapped to C++ classes manually.

Simulation specific data such as kinematics of generated particles, true hit information, etc., can be streamed in a
sim Tree in separate ROOT files for further studies.

It simulates detector readout electronics and produces waveforms. For example, the Liquid Xenon Calorimeter
waveforms are obtained by the convolution of the single-photoelectron response of a photomultiplier tube (PMT) with
hit-time information of scintillation photons simulated in GEM. PMT amplification, signal attenuation, saturation of
the readout electronics, noise, etc., are taken into account. Simulated waveforms are encoded in the same manner as
the experimental ones and written in a raw Tree in ROOT files.

It makes a mixture of several sub-events; rates of each event type are set with a configuration file. To study the
combinatorial background events, sub-events are mixed with various relative timing with respect to each other and
with respect to the trigger. For instance, random and fixed timing can be selected, and this allows simulating many
different pile-up configurations with a limited number of samples of events simulated through the detector.

8 The reconstruction and analysis program

Analyzer incorporates multiple purposes: event reconstruction, visualization, computation of calibration constants and
physics analysis.



Page 10 of 12 The European Physical Journal Plus

Fig. 8. A µ
+ → e

+
γ reconstructed event and closer views. Reconstructed hits in drift chambers and timing counters, a positron

track and a γ-ray are shown. The color code of the Calorimeter PMTs represents the output of each PMT.

8.1 Event reconstruction

Analyzer consists of several Tasks for each step of the analysis; each Task can be switched on/off.
In the first step, raw data are read and calibrations are applied to waveforms. In the second step, waveform

analysis specialized for each sub-detector are performed to extract time and charge of pulses. Waveforms are also used
to identify pile-up events and for particle identifications.

In the third and last step, the events are reconstructed using algorithms implemented by experts of each sub-
detector. Several different algorithms are implemented to reconstruct each kinematic parameter for crosschecks. Each
Task may have a dedicated Folder to write its result. Tasks share a Folder to hold results of a standard choice among
those algorithms; this choice is specified by a configuration file. Tasks are executed in the same process and results
are written in an output file together.

Figure 8 shows a reconstructed experimental event.

8.2 Visualization

Data quality is monitored for various time spans: event-by-event, run-by-run or in days.
For event-by-event monitoring, several displays are implemented. Figure 9 shows one of them. The displays show

waveforms, status of trigger, reconstructed hits and tracks and any other information useful for monitoring. Those
displays are used for both online and offline. When it is used for online monitoring, Analyzer and DAQ run in parallel
and data are transferred over a socket connection. Hard copies of the displays are saved periodically for remotely
monitoring using web browsers.

Two types of portable document format (PDF) files are automatically prepared by macros, which read histogram
files made by Analyzer. The first type shows histograms to describe the run and is made automatically for each run
soon after the run is finished. The second type shows strip charts to monitor time variations of the status of the
detector and of the electronics in a day or a week.
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Fig. 9. A graphical display of timing counter hits, waveforms. A reconstructed positron track is also shown.

8.3 Calibration

Analyzer is used also to compute calibration constants (photomultiplier gains, time offsets, etc.). Each calibration
constant is associated to a Task. The calibration Tasks are usually run on events already processed with a preliminary
set of calibration constants. The updated calibration constants can be made available in a variety of format: histograms,
text file or SQL macro. They can be stored in the database, and used in the next round of reconstruction.

8.4 Physics analysis

Event preselection and blinding for physics analysis, described in sect. 9, are implemented in Analyzer. On events in
the analysis region, likelihood analysis is performed to calculate the best estimate of the number of µ

+
→ e

+
γ signal

candidates, its confidence interval and the significance. The 90% confidence interval of the number of signal events
is calculated using the unified approach [17]. We made independent likelihood analysis tools with different statistical
methods or parametrization of probability density functions for crosschecks.

9 Offline processing

Just after a run is taken, a raw data file written in the MIDAS format is sent to the offline cluster, and a process to
analyze it starts automatically. The MIDAS files are compressed and stored on tapes. The compressed MIDAS files
and rec files of calibration runs are accessible for further studies, while a special treatment is done for the data of
physics runs.
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MEG has adopted the principle of “blind” analysis in searching for the µ
+

→ e
+
γ signal. This means that the

events with kinematic parameters closest to the expected signal (in the “blinding box”) cannot be used for determining
the analysis parameters (e.g., the cuts or the probability density functions) to avoid biasing the analysis. In order to
guarantee that, the data in the “blinding box” are inaccessible during the first phase of the analysis.

This concept is realized in Analyzer with Tasks streaming the events into different ROOT files depending on the
selection criteria they satisfy.

A first round of processing operates a pre-selection on coarsely calibrated data with loose cuts that are streamed
in:

selected : events passing the pre-selection,
unselected : events not passing the pre-selection,
unbiased : all calibration trigger events and every fiftieth physics-trigger event.

Trees containing raw waveforms are produced for “selected” and “unbiased” events in this step. The “unbiased”
samples are used for monitoring of the experiment and for the calibrations. The “selected” events are not accessible.
After the calibrations are finalized, reconstruction is performed on the “selected” samples using raw files. At the end
of this step, another Task applies tighter cuts defining the “blinding box”. The events are streamed into the files:

blind : events preselected in the “blinding box”, candidate to be signal,
open : events preselected but outside the “blinding box”,

and the “selected” files are deleted. The “blind” files are made accessible only when the analysis is finalized.

10 Conclusion

Software is a crucial component of any experiment and its power and flexibility is a key ingredient of its success.
MEG had the challenge to design a software structure that could strike a balance between flexibility and user-

friendliness. The limited size of the offline architecture group and the requirement that a large fraction of the col-
laboration could contribute to the programming of the algorithms, have led to greatly emphasize the use of known
packages as well as the shielding from the average programmer of I/O handling, format conversion and Object-Oriented
programming into the frameworks.

A mixed language environment with two separate frameworks, one for each environment, proved to be successful. It
relies heavily on standard software elements like GEANT3, ZEBRA, FFREAD in the simulation section implemented
in FORTRAN 77; XML, ROOT in the rest of the code implemented in C++; MySQL and SQLite for the database.

This configuration allowed the implementation of all experimental requirements within the tight time and manpower
constraints, such to support the physics analysis first published in [18].

We acknowledge the role of Dr. S. Ritt from PSI, who is the main author of the online software MIDAS. Integration of each
sub-detector part was done by many collaborators; forty of them have contributed to the MEG software.
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