

Development of ultra-low mass and high-rate capable RPC based on Diamond-Like Carbon electrodes for MEG II experiment

Kensuke Yamamoto^A

Sei Ban^A, Kei leki^A, Atsuhiko Ochi^B, Rina Onda^A, Wataru Ootani^A, Atsushi Oya^A, Masato Takahashi^B

(^AThe University of Tokyo, ^BKobe University)

26th-30th September 2022

XVI Workshop of Resistive Plate Chambers and Related Detectors (RPC2022)

<u>Outline</u>

- Introduction
 - MEG II experiment
 - DLC-RPC
- High-rate performance test with our 1st prototype detector
- Improved prototype test
- Summary and prospects

MEG II signal and background

- MEG II searches for $\mu \rightarrow e\gamma$ decay, one of charged lepton flavour violation (cLFV) channels
- Dominant background is accidental coincidence of $\mathrm{BG}\text{-}e^+$ and $\mathrm{BG}\text{-}\gamma$

<u>Radiative Decay Counter</u>

 $ar{
u}_{\mu}$

- Radiative Decay Counter (RDC) detects RMD e^+ with 1-5 MeV to tag BG- γ
 - . RMD γ tagged by time difference between γ in γ detector and e^+ in RDC

Requirements for upstream RDC

- 1. <0.1% X_0 material budget
 - μ beam with 28 MeV/c must pass through the detector
- 2. Rate capability for $10^8 \mu/s$ (4 MHz/cm² at centre)
- 3. Radiation hardness for >60 weeks operation
- 4. 90% efficiency for RMD e^+ with 1-5 MeV
- 5. 1 ns timing resolution
- 6. 20 cm diameter detector size

Ultra-low mass and high-rate capable RPC with Diamond-Like Carbon electrodes for upstream RDC

DLC-RPC (1)

- RPC with DLC electrodes (DLC-RPC)
 - DLC sputtered on 50 µm-thick polyimide (PI) foil
 - → Material budget can be suppressed
 - Electrodes decoupled by PI
 - → HV applied for each layer independently

Diamond-Like Carbon

Avalanche

Current

- Spacers formed using photolithographic technology
 - · Should be careful to make flat thin film

DLC-RPC for MEG II

- Electrodes stacked for higher detection efficiency
 - Efficiency with *n* layers: $\epsilon_n = 1 (1 \epsilon_1)^n$
- 4 layers limited by material budget
 - . 50 µm-thick PI foil: 0.018% X₀
- . $\epsilon_1 > 40\,\%$ for 90% detection efficiency with 4 layers
 - >300 µm gap thickness needed

R&D history

<u>Outline</u>

- Introduction
- High-rate performance test with our 1st prototype detector
 - 1st prototype detector
 - High rate performance
- Improved prototype test
- Summary and prospects

Electrode production

2 - Insulation cover deposited

- 25 µm-thick photo-resist
- Deposited on DLC boundary

<u>1st prototype detector</u>

High rate capability of DLC-RPC

- Large current on resistive electrodes at high rate
- → Voltage drop δV reduces effective applied HV V_{eff}
- → Gas gain reduction

<u>High-rate performance test</u>

- . MIP e^+ detection in low-momentum μ^+ beam
 - . μ^+ beam at piE5 at Paul Scherrer Institut

Performance at high rate

Detection efficiency:

- 45-50% at 1 MHz/cm²
- 20-40% at 3.5 MHz/cm²

Calculated voltage drop:

- 110-170 V at 1 MHz/cm²
- 210-310 V at 3.5 MHz/cm²

→ 1 MHz/cm² rate capability

Electrode to be improved

- Voltage drop should be suppressed for higher rate capability
 - HV supply segmented for short current flow (1 cm pitch)
 - Voltage drop \propto (current flow distance)²
 - Need also for scalability
 - Resistivity should be low (10 $M\Omega/sq.$)
 - Voltage drop ∝ (sheet resistivity)
 - Not too low for stable operation
- → Voltage drop will be 60-80 V at 4 MHz/cm²

<u>Outline</u>

- Introduction
- High-rate performance test with our 1st prototype detector
- Improved prototype test
 - Develop improved electrode
 - Performance test at $\mathcal{O}(10 \text{ kHz/cm}^2)$
- Summary and prospects

Electrode production

1 - DLC sputtered on Kapton foil

3 - Insulation cover deposited

- 25 µm-thick photo-resist
- Deposited on conductive pattern and DLC boundary

- 2 Conductive pattern implemented
- Cr can be well-connected onto DLC

4 - Spacers formed

- ~160 µm-thick photo-resist
- Doubly accumulated for >300 μm gap thickness

Spacer formation

- Previous spacer material production cancellation
- → New spacer material used
 - >300 μ m-thick spacers cannot be formed \triangleleft
- Strategies for enough gap thickness
 - Form ~200 µm-thick spacers
 - Doubly accumulate spacers with precise alignment

300 µm gap thickness needed for enough efficiency

Produced electrode

Good connection between Cr & DLC

Good alignment

27 Sept. 2022

Gap thickness non-uniformity

Performance with single layer

Event display

Voltage [V]

<u>Outline</u>

- Introduction
- High-rate performance test with our 1st prototype detector
- Improved prototype test
- Summary and prospects

Summary & prospects

- Ultra-low mass and high-rate capable RPC with DLC electrodes is under development
 - For BG tagging in MEG II experiment
- 1 MHz/cm² rate capability achieved with 1st prototype detector
 - 45-50% detection efficiency with single layer even with 110-170 V drop
- Improved prototype detector produced and tested
 - Cr+Cu pattern formed on DLC for HV supply segmentation
 - 46% detection efficiency achieved with single layer at 10 kHz/cm²
 - Gap thickness to be controlled
- . Performance to be evaluated with μ^+ beam at 4 MHz/cm²

27 Sept. 2022

MEG II experiment

- . MEG II searches for $\mu^+ \to e^+ \gamma$ decay with the sensitivity of 6×10^{-14}
 - SM + ν osc: $\mathscr{B}(\mu^+ \rightarrow e^+ \gamma) \sim 10^{-54}$
 - . BSM (SUSY-GUT, SUSY-seesaw): $\mathscr{B}(\mu^+ \rightarrow e^+\gamma) \sim 10^{-11} 10^{-15}$

DLC sputtering

Spacer formation

Efficiency vs gap thickness

Efficiency improved by stacking

Voltage drop evaluation

A. Oya, et al, "Development of high Observe voltage drop of 110-170 V rate capable and ultra-low mass Resistive Plate Chamber with Diamond-Like Carbon", TIPP2021 Triggered timing Off timina Accidental μ^+ 300 **Calculated voltage drop** 250 200 ∑₁₆₀ do.p 140 150 Sum Anode Cathode oltage 120 100 100 hyperson and the second s -600 -400 -200 0 [ns] 80 Height spectra at 1 MHz/cm² μ height spectra 2.75 kV Entries 60 2.65 kV **Readout** region **Triggered timing** 40 2.55 kV **Off-timing** 20 10^{3} e height spectra 0 -0.5 0.5 oltries X [cm] 10^{2} 0110 $\nabla^2 \delta V(x, y) = Q_{\text{mean}}(V_{\text{eff}}) \cdot f(x, y) \cdot \rho_S$ 10-10 10⁻⁴-0.1 • $Q_{\text{mean}} = 2.3 \text{ pC}$ 0 0.1 0.2 0.3 0.4 Pulse heigh 10 • $\rho_{\rm S} = 60 \ {\rm M}\Omega/{\rm sq}$ for anode • $\rho_{\rm S} = 7 \ {\rm M}\Omega/{\rm sq}$ for cathode 10-0.3 0.2 0.4 -0.1 0.1 0.5 0.1 -0.1 0 0.2 0.3 0.4 0.5 Pulse height [V]

Vormalized entries

Pulse height [V]

Details are shown in

<u>Response to low-momentum μ^+ </u>

Measured µ height spectra

Voltage drop estimation

 $\ell_{\rm pitch}$ dependence

27 Sept. 2022

 $\rho_{\rm S}$ dependence

Conductive pattern structure

剥がれなし

0倍

Resistivity control

Resistivity reduction by annealing

DLC thickness

