New experiment to search for $\mu \rightarrow e \gamma$ at PSI status and prospects

Wataru Ootani

International Center for Elementary Particle Physics(ICEPP)

University of Tokyo

For the MEG collaboration

NOON01 Kashiwa, Dec. 8, 2001

Physics Motivation

μ e γ decay

- Event signature
 - Back to back,
 - Time coincident
 - $E_e = E\gamma = 52.8 MeV$

- Lepton-family-number nonconserving process
- Forbidden in the standard model
- Sensitive to physics beyond the standard model SUSY-GUT, SUSY+ _R, ...
- Present experimental bound

Br(μ^+ e⁺) < 1.2 x 10⁻¹¹ (MEGA experiment, 1999)

• New experiment with a sensitivity of BR~10⁻¹⁴ planned at PSI

Physics Motivation, cont'd

SU(5) SUSY-GUT predicts BR (μ e γ) = 10⁻¹⁵ - 10⁻¹³ (SO(10) SUSY-GUT: even larger value 10⁻¹³ - 10⁻¹¹)

Physics Motivation, cont'd

Good news from ...

- Solar neutrino results from Super-Kamiokande "MSW large angle mixing" is favored
 - \Rightarrow enhance μ e γ rate
- Muon g-2 experiment at BNL
 2.6σ deviation from the SM prediction
 ⇔ enhance μ eγ rate

Signature of μ e could be discovered somewhere above BR ~ 10⁻¹⁴

New μ e γ experiment at PSI

- Sensitivity down to BR~10⁻¹⁴
- Most intense DC muon beam at PSI
- Liquid xenon photon detector
- Positron spectrometer with gradient magnetic field
- Thin superconducting magnet
- Positron tracker and timing counter
- Engineering/physics run will start in the summer of 2003

MEG collaboration

Proposal approved in May 1999 at PSI

Institute	Country	Main Resp.	Head	Scientists	Students
ICEPP, Univ. of Tokyo	Japan	LXe Calorimeter	T. Mori	12	3
Waseda University	Japan	Cryogenics	T. Doke	5	3
INFN, Pisa	Italy	e⁺ counter, trigger, M.C.	C. Bemporad	4	3
IPNS, KEK, Tsukuba	Japan	Supercoducting Solenoid	A. Maki	5	-
PSI	Switzerland	Drift Chamber, Beamline, DAQ	S. Ritt	4	-
BINP, Novosibirsk	Russia	LXe Tests and Purification	B. Khazin	4	-
Nagoya University	Japan	Cryogenics	K. Masuda	1	-

Where to search for $\mu \rightarrow e \gamma$?

Paul Scherrer Institut (PSI) in Switzerland

Ring Cyclotron:

Operating current ~ 1.8 mA (Max >2.0mA)

• DC muon beam rate above $10^8 \mu/s$ at π E5 beam line

Sensitivity and Backgrounds

• Single event sensitivity

 N_{μ} =1x10⁸/sec, T=2.2x10⁷sec, $\Omega/4\pi$ =0.09, ϵ_{γ} =0.7, ϵ_{e} =0.95

 \Rightarrow BR(μ^+ e⁺ γ) ~ 0.94 x 10⁻¹⁴

- Major backgrounds
 - Accidental Coincidence Michel decay(µ + e + e μ) + random B_{eesidental} ~ 5 x 10⁻¹⁵

$$\mu^{+} e^{+} e^{\mu} B_{prompt} \sim 10^{-17}$$

Expected detector performance

E _e	0.7% (FWHM)
E	1.4 – 2.0 % (FWHM)
θ_{e}	12 – 14 mrad(FWHM)
t _e	0.15 nsec (FWHM)

Gamma detection

Excellent energy-, timing-, and position resolutions

⇒ Liquid xenon scintillation detector

Detector design

- Active volume of LXe: 600 liter
- Scintillation light is collected by ~800 PMTs immersed in LXe
- Effective coverage: ~ 35%

Liquid Xenon Scintillator

- High light yield (75% of NaI(TI))
- Fast signals
 - →avoid accidental pileups
- Spatially uniform response No need for segmentation

LXe properties

Mass number	131.29
Density	3.0 g/cm ³
Boiling and melting points	165 K, 161 K
Energy per scintillation photon	24 eV
Radiation length	2.77 cm
Decay time	4.2 nsec (fast)22 nsec (slow)45 nsec (recombi.)
Scintillation light wave length	175 nm
Refractive index	1.57 – 1.75?

Small Prototype

- 32 x PMTs
- Active Xe volume

116 x 116 x 174 mm³ (2.3liter)

 Energy-, Position-, and Timing resolution for gamma up to 2MeV

Small Prototype results

Energy

Simple extrapolations from the results implied

 $\begin{array}{ll} \sigma_{energy} & \sim 1\%, \\ \sigma_{position} & \sim a \ few \ mm, \\ \sigma_{time} & \sim 50 \ psec \end{array}$

for 52.8MeV gamma from $\mu \! \rightarrow \! e \, \gamma$

But, has to be verified with larger detector for higher energy(~50MeV) gamma rays

Small Prototype results, cont'd

Large Prototype

- 228 PMTs, 69liter LXe
- Large enough to test with ~50MeV γ

Purposes

- Performance test with high energy γ (Energy-, position-, time resolutions)
- Check of cryogenics and other detector components
- Absorption length measurements

Large Prototype Current Status

- Construction finished
- Performance of the cryogenics very good!
- First test with 40MeV γ beam in June 2001 at AIST, Tsukuba, Japan
 - \bullet 40MeV γ observed, analysis in progress
 - Various detector components worked well (refrigerator, feedthrough, PMT holder, etc.)
- Second beam test is scheduled at the beginning of 2002
- Test with cosmic rays in progress

Positron Detection

COBRA spectrometer

- Thin superconducting magnet with gradient magnetic field
- Drift chamber for positron tracking
- Scintillation counters for timing measurement

COBRA spectrometer

COnstant Bending RAdius (COBRA) spectrometer

• Constant bending radius independent of emission angles

Uniform field

• Low energy positrons quickly swept out

Magnet

- $B_c = 1.26T$, $B_{z=1.25m} = 0.49T$, operating current = 359A
- Five coils with three different diameter to realize gradient field
- Compensation coils to suppress the residual field around the LXe detector
- High-strength aluminum stabilized superconductor →thin superconducting coil

Magnet Residual field around LXe detector

Tolerance to magnetic field of PMT

Magnet current status

- Magnet design finalized
- High-strength aluminum stabilized superconductor
 All the cable fabricated and delivered.
- Coil winding is starting
- Construction of the cryostat and assembly will be finished by the end of 2002

Positron Tracker

- 17 chamber sectors aligned radially with 10 ° intervals
- Two staggered arrays of drift cells
- Chamber gas: He-C₂H₆ mixture
- Vernier pattern to determine z-position

Positron Tracker, cont'd

- Prototype with same cell geometry as the final detector.
- Test in the magnetic field up to 1T.

Positron Timing Counter

- Two layers of scintillator bars placed at right angles with each other Outer: timing measurement Inner: additional trigger information
- Goal σ_{time} ~ 50psec

Positron Timing Counter, cont'd

CORTES: Timing counter test facility with cosmic rays at INFN-Pisa

Trigger Electronics

*	Beam rate	10 ⁸ s ⁻¹
*	Fast LXe energy sum > 45MeV	2×10 ³ s ⁻¹
*	γ interaction point	
*	e ⁺ hit point in timing counter	
*	time correlation $\gamma - e^+$	200 s ⁻¹
***	angular correlation $\gamma - e^+$	20 s ⁻¹

Possible trigger system structure

Beam Transport System

- Two separate branches of the π E5 beam line, "U"-branch and "Z"-branch
- Comparative study between two branches on going. Muon instensity, μ/e ratio,...

The layout of *π***E5**

Slow Control System

- New field bus system under development for reliable control of cryogenics of LXe detector, superconducting magnet, high voltage supply
- Low cost (typ. 20 US\$ per node)
- Several prototypes have been built and tested at PSI
- See http://midas.psi.ch/mscb

Summary

- New experiment to search for µ→e γ down to BR~10⁻¹⁴ at PSI is in preparation.
- Signature of new physics such as SUSY-GUT could be discovered somewhere above BR~10⁻¹⁴.
- Preparations of all the detector components are going well.
- Next big milestone is the second gamma beam test with the large prototype of the xenon detector at AIST in the beginning of 2002.

For more info, see http://meg.icepp.s.u-tokyo.ac.jp