Performance of the Liquid Xenon Scintillation Detector for the MEG Experiment at PSI

> W. Ootani for the MEG collaboration

XeSAT2005 Mar. 8-10, 2005, Tokyo

Outline

- Introduction
- Beam Tests with Prototype
- Calibration Spot Source on Wire
- Waveform Digitizer
- LXe Purification System
- Summary

Introduction

100L Prototype

Beam Tests with Prototype

Beam Tests with the Prototype

- Two complementary beam tests were performed to demonstrate the good performance of the LXe calorimeter for the MEG experiment.
 - \blacksquare Laser Compton backscattered (LCS) photons up to 40 MeV
 - Energy and position measurements
 - 55MeV and 83MeV photons from π⁰ produced in charge exchange (CEX) process, π⁻+p→π⁰+n.
 - Energy and time measurements

Beam Tests with CEX Process

- Two photons from π^0 produced in charge exchange (CEX) process, $\pi^-+p \rightarrow \pi^0+n$.
 - Almost monochromatic 55MeV and 83MeV photons by selecting two photons with an opening angle θ~180°
 - Energy spread: 0.5%(2.3%) requiring θ>170°(175°) at 55MeV
- 129MeV photon from radiative capture process, $\pi^-+p \rightarrow \gamma+n$.
- Monochromatic photon (55, 83, and 129MeV) available, but
 - Limited photon intensity due to the small cross section of the CEX process.
 - Beam-related background
- Energy and time resolutions can be studied.

CEX Beam Test Setup

Energy Measurement

- 55MeV (83MeV) event in LXe by selecting 83MeV (55MeV) event in NaI
 - |x|, |y| < 2cm
 - 55MeV event in LXe
 - $45 \text{MeV} < E_{\text{NaI}} + E_{\text{LYSO}} < 70 \text{MeV}$
 - 55MeV event in LXe
 - $70 \text{MeV} < \text{E}_{\text{NaI}} + \text{E}_{\text{LYSO}} < 105 \text{MeV}$
 - Cut and correction with depth parameter

Energy Measurement, Results

Energy Measurements Summary

- Combined results on energy resolutions from LCS and CEX beam tests
- Energy resolution improves as number of photoelectrons increases.

Time Measurement

- Timing of the event was measured with a time reference counter (LYSO counter).
- After corrections for time-walk and position, we obtained at 55MeV

• **σ** = 110 psec

- This includes timing resolution of reference counter (64 psec) and target size effect (61 psec)
 - $\sigma = 110$ psec 64 psec 61 psec
 - = 65psec

α spot sources on wire

- Alpha spot sources on wire for calibration and stability monitor
- Po-210 electrodeposited on a gold-plated tungsten wire (50μmφ)
- Eight spot sources (two on each wire) with 30-100Bq/source.
- Each PMT can see the light from alpha sources at different distances.

Reconstructed source position

Waveform Digitizer

- All 830 PMTs will be read by fast waveform digitizer developed at PSI (Domino Ring Sampling Chip)
- DRS chip (2nd version) was tested in the 100L prototype.
 - 10ch/chip (8 for data and 2 for calibration)
 - 2.5GHz sampling (400ps/sample)
 - 1024 sampling cells
 - Readout 40MHz 12bit

DRS2

Waveform from 100L prototype

Waveform Digitizer, cont'd

- Pulse shape discrimination
- Timing resolution comparable as obtained with TDC.
- Pileup rejection power is being studied.

Pulse shape discrimination

LXe Purification System

Scintillation Light Absorption by Impurities

Scintillation light can be absorbed by impurities in LXe.
H₂O is the most dangerous contaminants for our detector.

Gas Phase Purification

- Purification system developed to remove water from LXe. (physics/0407033, to be published in NIMA)
- Absorption length > 3m achieved.
- It works great, but takes long time because of the limited flow rate.
 - Flow rate 5L/min in gas.
 - Normally two weeks for the prototype.

Liquid Phase Purification

- A new purification system is being developed to increase purification speed for purification in full-scale detector (800L LXe).
- Fluid pump + moisture filter (molecular sieve) inside the chamber.
- Cryogenic fluid pump
 - Barber-Nicols BNCP-62-000
 - Flow rate: 100L/hr in liquid (design)
 - Rot. speed: 3175rpm

Purification system installed in 100L prototype

Motor Fluid pump

Molecular sieve cartridgeImpeller

Liquid Phase Purification, cont'd

- Liquid phase purification system is now being tested in the 100L prototype at PSI.
- Cryogenic fluid pump works in LXe!
- Purification with this system seems to work well although the details are being analyzed.

Summary

- A prototype detector with 100L LXe was developed to demonstrate the good performance of the planned LXe calorimeter.
- Two complementary beam tests were successfully carried out with the prototype.
- From these tests it can be concluded that the proposed LXe calorimeter will fulfill the requirements for the calorimeter in the MEG experiment to search for $\mu \rightarrow e\gamma$ with an sensitivity of BR<10⁻¹³.
- New purification system based on cryogenic fluid pump is being developed and purification speed seems much faster than that of gas phase purification system.