Charged Lepton Flavor Violation Experiments

Giovanni Signorelli INFN Sezione di Pisa - Italy

19–24 May, Bùzios, Brazil

Outline

- (Charged) Lepton Flavour in the Standard Model
- Observables towards new physics
- The "classical searches"
 - μ→eγ
 - µ→3e
 - µN→eN
- Status and perspectives

Flavor in the SM

- Unlike the quark sector, lepton flavor transitions are forbidden in the SM due to the vanishing neutrino masses
- Charged current interaction with the W field

$$J^{\mu} = \bar{d}'_L \gamma_{\mu} U^{d \dagger}_L {}^{\dagger} U^u_L u'_L + \bar{e}'_L \gamma^{\mu} U^{e \dagger}_L {}^{\prime} \nu_L$$

- In the SM lepton flavor transition are forbidden
- Nevertheless neutrino oscillations were observed
 - Flavor transitions in the (neutral) lepton sector
 - vSM

charged Lepton Flavor Violation

• cLFV decays in the SM is radiatively induced by neutrino masses and mixings at a negligible level

• All SM extensions enhance the rate through mixing in the high energy sector of the theory (other particles in the loop...)

- Clear evidence for physics beyond the SM
 - background-free
- Restrict parameter space of SM extensions

Many processes

• LFV is related to "new" lepton-lepton couplings and effective operators

NP

μ

e

Ze

NP

 $B \to \ell \bar{\ell}'$

 $B \to \ell \bar{\ell}' X_s$

b

- A wide field of research
 - LFV decays
 - Anomalous magnetic moment for the μ , τ
 - Muon-to-electron conversion
 - LFV in B-meson decays)

Processes are correlated

Connections

...

Connections

...

5.7 × 10⁻¹³ Present limits

Experimental effort

	Dedicated experiment	Multi-purpose experiment
Exotic Searches New Physics if seen Experiment limited	$\begin{array}{c} \mu \rightarrow e \gamma \\ \mu \rightarrow e e e \\ \mu^- N \rightarrow e^- N \end{array}$	$\begin{array}{l} \tau \rightarrow \mu \gamma \\ \tau \rightarrow e \gamma \\ K_L^0 \rightarrow \mu e \\ Z' \rightarrow e \mu \\ \tau \rightarrow 3\ell \end{array}$
BSM physics NP if deviations from SM Theory limited	$e, \mu, n \text{ edm}$ $(g-2)_{\mu}$ $(g-2)_{e}$ $rac{\pi^{+}(K^{+}) ightarrow e^{+} u}{\pi^{+}(K^{+}) ightarrow \mu^{+} u}$ $K_{L}^{0} ightarrow \pi^{0} u u$	$\begin{array}{l} B \to \mu \mu \\ b \to s \gamma \\ \frac{\tau \to e \nu \nu}{\tau \to \mu \nu \nu} \\ K^+ \to \pi^+ \nu \nu \end{array}$

Experimental effort

	Dedicated experiment	Multi-purpose experiment
Exotic Searches New Physics if seen Experiment limited	$\begin{array}{c} \mu \rightarrow e \gamma \\ \mu \rightarrow e e e e \\ \mu^- N \rightarrow e^- N \end{array}$	$egin{aligned} & au o \mu \gamma \ & au o e \gamma \ & K_L^0 o \mu e \ & Z' o e \mu \ & au o 3\ell \end{aligned}$
BSM physics NP if deviations from SM Theory limited	$e, \mu, n \text{ edm}$ $(g-2)_{\mu}$ $(g-2)_{e}$ $rac{\pi^{+}(K^{+}) ightarrow e^{+} u}{\pi^{+}(K^{+}) ightarrow \mu^{+} u}$ $K_{L}^{0} ightarrow \pi^{0} u u$	$R \rightarrow m''$ $I \text{ will concentrate or the "classical" searches}$ $K^+ \rightarrow \pi^+ \nu \nu$

65 years of searches

- Each improvement linked to beam and detector technology
- Trade-off between sub-detectors to achieve the best "sensitivity"

Complementarity

Capability of different measurements to discriminate between models

13

"Classical" searches

• Widespread in the world

• Mu2e - Deeme - Comet Phase I - II

Kinematics

Kinematics

- 2-body decay
- Monoenergetic e^+ , γ
- Back-to-back

Kinematics

- Quasi 2-body decay
- Monoenergetic e⁻
- Single particle detected

Kinematics

 $\mu^+ \rightarrow e^+ e^- e^+$

- 3-body decay
- Invariant mass constraint
- $\Sigma p_i = 0$

Background

µ⁻N → e⁻N

Kinematics

- 2-body decay
- Monoenergetic $e^{\scriptscriptstyle +}, \gamma$
- Back-to-back

Background

Accidental background

Kinematics

- Quasi 2-body decay
- Monoenergetic e⁻
- Single particle detected
 Background
 - Decay in orbit
 - Antiprotons, pions

Kinematics

 $\mu^+ \rightarrow e^+ e^- e^+$

- 3-body decay
- Invariant mass constraint
- $\Sigma p_i = 0$

Background

- Radiative decay
- Accidental background

Beam requirements

MEG experimental method

▼ e⁺

- μ: stopped beam of 3 x 10⁷ μ /sec in a 205 μm polyethylene target
 - PSI π E5 beam line: 29 MeV μ^+
- e⁺ detection

magnetic spectrometer composed by solenoidal magnet and drift chambers for momentum plastic counters for timing

• γ detection

Liquid Xenon detector based on the scintillation light

- fast: 4 / 22 / 45 ns
- high LY: ~ 0.8 * Nal
- short X₀: 2.77 cm

Some detector pictures

DC system

LXe detector

Beam Line

Calibration & Monitoring

Calibration & Monitoring

MEG schedule

- 2009+2010 analysis: BR($\mu \rightarrow e\gamma$)< 2.4 x 10⁻¹² @ 90%C.L.
- 2011 data
 - Doubled the statistics
 - Improved trigger and reconstruction efficiency
 - Hardware modification
 - **_ BGO** for calibration
 - **Laser tracker system for drift chamber alignment**
- 2009-2011 Analysis improvements
 - Reconstruction improvements
 - **–** γ-ray pileup unfolding
 - e⁺ waveform FFT noise reduction + revised track fitter
- 2012 in progress

2009-2011 fit result

- Blind- box analysis strategy
 - off-time sideband
 - off angle sideband
- Three independent analyses
 - different *pdf* implementation
 - Fit or input N_{RMD}, N_{BG}
 - Different statistical treatment (Freq. or Bayes)
- Use of the sidebands
 - our main background comes from accidental coincidences
 - RMD can be studied in the low E_Y sideband

Combined 2009 + 2010

 $\mathcal{B}_{\rm fit} \times 10^{12}$ $B_{90} \times 10^{12}$ $S_{90} \times 10^{12}$ 0.09 1.3 1.3 -0.350.67 1.1-0.060.57 0.77

PRL 110, 201801 (2013)

PHYSICAL REVIEW LETTERS

week ending 17 MAY 2013

New Constraint on the Existence of the $\mu^+ \rightarrow e^+ \gamma$ Decay

PRL 17 May 2013 20 times better than J. Adam,^{1,2} X. Bai,³ A. M. Baldini,^{4a} E. Baracchini,^{3,5,6} C. Bemporad,^{4a,4b} G. Boca,^{7a,7b} P. W. Cattaneo,^{7a} G. Cavoto,^{8a} F. Cei,^{4a,4b} C. Cerri,^{4a} A. de Bari,^{7a,7b} M. De Gerone,^{9a,9b} T. Doke,¹⁰ S. Dussoni,^{4a} J. Egger,¹ Y. Fujii,³ L. Galli,^{1,4a} F. Gatti,^{9a,9b} B. Golden,⁶ M. Grassi,^{4a} A. Graziosi,^{8a} D. N. Grigoriev,^{11,12} T. Haruyama,⁵ M. Hildebrandt,¹ Y. Hisamatsu,³ F. Ignatov,¹¹ T. Iwamoto,³ D. Kaneko,³ P.-R. Kettle,¹ B. I. Khazin,¹¹ N. Khomotov,¹¹ O. Kiselev,¹ A. Korenchenko,¹³ N. Kravchuk,¹³ G. Lim,⁶ A. Maki,⁵ S. Mihara,⁵ W. Molzon,⁶ T. Mori,³ D. Mzavia,¹³ R. Nardò,^{7a} H. Natori,^{5,3,1} D. Nicolò,^{4a,4b} H. Nishiguchi,⁵ Y. Nishimura,³ W. Ootani,³ M. Panareo,^{14a,14b} A. Papa,¹ G. Piredda,^{8a} A. Popov,¹¹ F. Renga,^{8a,1} E. Ripiccini,^{8a,8b} S. Ritt,¹ M. Rossella,^{7a} R. Sawada,³ F. Sergiampietri,^{4a} G. Signorelli,^{4a} S. Suzuki,¹⁰ F. Tenchini,^{4a,4b} C. Topchyan,⁶ Y. Uchiyama,^{3,1} C. Voena,^{8a} F. Xiao,⁶ S. Yamada,⁵ A. Yamamoto,⁵ S. Yamashita,³ Z. You,⁶ Yu. V. Yudin,¹¹ and D. Zanello^{8a}

previous limit!

Present & Future

- We have just started the 2013 data-taking (last year)
- MEG is expected to saturate its sensitivity with this year's run
- In the meanwhile an upgrade was presented and accepted by PSI laboratory

1. Increasing μ^+ -stop on target

e

- 2. Reducing target thickness to minimize e+ MS & brehmsstrahlung
- 3. Replacing the e+ tracker reducing its radiation length and improving its granularity and resolutions
 - 4. Improving the timing counter granularity for better timing and reconstruction
 - 5. Improving the positron tracking-timing integration by measuring the e+ trajectory up to the TC interface
- 6. Extending the γ -ray detector acceptance
- 7. Improving the γ -ray energy and position resolution for shallow events
- 8. Integrating splitter, trigger and DAQ maintaining a high bandwidth

3.

3.

5.

MEG^{UP} sensitivity

- Ultimate sensitivity at the few x 10⁻¹⁴ level
- Engineering run 2015
- Data taking 2016-2018

28

- Search for $\mu \rightarrow e e e$
 - 10⁻¹⁵ sensitivity in phase I
 - 10⁻¹⁶ sensitivity in phase II
- Project approved in January 2013
 - Doble cone target
 - HV-MAPS ultra thin silicon detectors
 - Scintillating fibers timing counter

HIMB at PSI

- Muon rates in excess of 10¹⁰/s in acceptance
- 2.10° /s needed for $\mu \rightarrow eee$ at 10^{-16}
- Not before 2017

25 cm

$\mu N \rightarrow eN$

- Coherent muon capture on nucleus (Al is the candidate)
- Single mono-energetic electron
 - $Ee = m\mu B\mu recoil$
- Only one particle in final state
 - No (accidental) background limited
 - Unlike $\mu \rightarrow e\gamma$ and $\mu \rightarrow 3e$ there is no experimental "wall" until conversion rates O(10⁻¹⁸)
 - It is anticipated that will provide the ultimate sensitivity to CLFV
- Background comes from
 - μ decay-in-orbit (DIO)
 - radiative muon capture
 - bkg n and γ-rays are produced
 - beam related background (π and e contaminations)
 - high purity environment
 - curved solenoid (Dzhilkibaev and Lobashev, 1989)
 - pulsed beam with challenging extinction

$\mu N \rightarrow e N$ experiments: mu2e

• Mu2e @ FNAL and COMET @ J-PARC are quite similar in the outline

- p-beam hits a target
- solenoid collects π^- and let them decay to μ^-
- μ^- are transported to the capture target
- A pulsed beam allows a time window for events \Rightarrow needs high extinction

Starts in 2020 Data in 2022 SES ~ 2 x 10⁻¹⁷

COMET: phase II

• COMET @ J-PARC has some differences

COMET: phase I

• COMET @ J-PARC has some differences

In the meanwhile: DeeMe

- **DeeMe** at J-PARC aims at searching for $\mu N \rightarrow eN$ with a 10⁻¹⁴ sensitivity
- production target and conversion target are the same
- rotating silicon carbide target
- physics data taking planned to start in 2015

SiC sample

Summary

- CLFV activities in the World
- Complements flavor physics from the lepton sector
- MEG improved the limit on $\mu \rightarrow e \gamma$
 - 5.7 x 10⁻¹³ @ 90% C.L.
 - Further improvement expected
- MEG^{UP}
 - Down to 6 x 10⁻¹⁴
- Mu3e @ PSI
 - Staged approach waiting for a HIMB
 - <10⁻¹⁶ level
- Mu2e, DeeMe and COMET
 - intensive R&D for the realization of the experiments
 - Staged setup to test part of the techniques
 - 10⁻¹⁷ level
 - towards 10⁻¹⁸ with future muon campuses (Project-X and PRISM/PRIME)
- Complementarity with **τ**, meson and exotic CLFV

The future: stay tuned!

E. C. Dukes, TAU2010

End of slides

Prospects for τ LFV at Belle II

- Belle II will collect ~ $10^{11} \tau$ -leptons (50/ab) $\frac{4}{5}_{10}$
- Sensitivity depends on the background level
 - $-\tau \rightarrow 3I$ still clean even at Belle II
 - For τ → μγ better understanding of backgrounds, signal resolution and intelligent selections are needed

Summary Belle τ LFV results

Super e^+e^- factory sensitivity directly confronts New Physics models of CLFV

Summary of results in LFV searches

channel	limit		
$\mathcal{B}(B^- \rightarrow \pi^+ e^- e^-)$	$< 2.3 \times 10^{-8}$	@90 % CL	a
$\mathcal{B}(B^- \rightarrow K^+ e^- e^-)$	$< 3.0 \times 10^{-8}$	@90 % CL	a
$\mathcal{B}(\mathrm{B}^- \to \mathrm{K}^{*+}\mathrm{e}^-\mathrm{e}^-)$	$< 2.8 \times 10^{-6}$	@90 % CL	ōş ^b
$\mathcal{B}(B^- \rightarrow \rho^+ e^- e^-)$	$< 2.6 \times 10^{-6}$	@90 % CL	ō₫ ^b
$\mathcal{B}(B^- \rightarrow D^+ e^- e^-)$	$< 2.6 \times 10^{-6}$	@90 % CL	BC
$\mathcal{B}(B^- \rightarrow D^+ e^- \mu^-)$	$< 1.8 \times 10^{-6}$	@90 % CL	Bc
${\cal B}({ m B}^- o\pi^+\mu^-\mu^-)$	$< 1.3 \times 10^{-8}$	@95 % CL	thep d
$\mathcal{B}(B^- \to K^+ \mu^- \mu^-)$	$< 5.4 \times 10^{-7}$	@95 % CL	tich e
$\mathcal{B}(B^- \rightarrow D^+ \mu^- \mu^-)$	$< 6.9 \times 10^{-7}$	@95 % CL	Hick d
$\mathcal{B}(\mathrm{B}^- \to \mathrm{D}^{*+} \mu^- \mu^-)$	$< 2.4 \times 10^{-6}$	@95 % CL	Hich d
$\mathcal{B}(B^- \rightarrow D_s^+ \mu^- \mu^-)$	$< 5.8 \times 10^{-7}$	@95 % CL	thep d
${\cal B}(\mathrm{B}^- o \mathrm{D}^0 \pi^- \mu^- \mu^-)$	$< 1.5 imes 10^{-6}$	@95 % CL	rich d

^aBaBar, Phys. Rev. D **85**, 071103 (2012) ^bCLEO, Phys. Rev. D **65**, 111102 (2002) ^cBelle, Phys. Rev. D **84**, 071106(R), (2011) ^dLHCb, Phys. Rev. D **85**,112004 (2012) ^eLHCb, Phys. Rev. Lett. 108 101601 (2012)

TAU 2012 (Nagova)

24

µZ→eZ

muon decay in orbit

But also neutrinoless nuclear capture $\mu Z \rightarrow eZ...$

Only one particle in final state: no accidental background issue. Background scales only linearly with beam rate → very big chance to explore extremely low BR...

Looking for single monoenergetic electron: $E_e \sim E_{\mu}-B_{\mu}$ (recoil energy negligible)

Background coming from:
µ decay in orbit
radiative µ capture

Beam related background:

• π and e contaminations

improving detector resolutions high purity environment: curved solenoid with gradient field pulsed beam with challenging extinction time

µZ →eZ status

Current limit by SINDRUM II: The current limit comes from SINDRUM II $BR(\mu Ti \rightarrow e_{BRi}) < 4.3 \times 10^{-12}$ $BR(\mu Au \rightarrow eAu) < 7 \times 10^{-13}$

Beam intensity: $3 \times 10^7 \mu/s$ (@PSI) Energy of emitted electrons is measured with a cylindrical magnetic spectrometer: drift chamber and scintillators/Cerenkov hodoscope.

> SINDRUM II parameters: beam intensity: 3x10⁷ μ/s μ momentum: 53 MeV/c magnetic field: 0.33T acceptance: 7% momentum res.: 2% FWHM S.E.S 3.3x10⁻¹³

	Mu2e	COMET
Proton Beam	8 GeV, 8kW bunch-bunch spacing 1.69 µsec rebunching Extinction: < 10 ⁻¹⁰	8 GeV, 50kW bunch-bunch spacing 1.18-1.76 µsec empty buckets Extinction: < 10 ⁻⁹
Muon Transport	S-shape solenoid	C-shape solenoid
Detector	Straight Solenoid w/gradient field Tracker and Calorimeter	C-shapes of the society of the socie
Sensitivity	SES: 2 x 10 ⁻¹⁷ 90% CL U.L.: 6 x 10 ⁻¹⁷	SES: 2.6 x 10 ⁻¹⁷ 90% CL U.L.: 6 x 10 ⁻¹⁷

PRISM at J-Parc

Aiming for a 10^{-18} search with an extreme high intensity ($10^{11} \div 10^{12} \mu/s$) beam with μ storage ring.

Fixed-field alternating gradient synchrotron perform conversion from original short-pulse beam with high momentum spread (30%) into a long pulse beam with narrow momentum spread (3%).

Key elements to MEG^{UP}

1. Increasing μ^+ -stop on target

е

- 2. Reducing target thickness to minimize e+ MS & brehmsstrahlung
- 3. Replacing the e+ tracker reducing its radiation length and improving its granularity and resolutions
- 4. Improving the timing counter granularity for better timing and reconstruction
- 5. Improving the positron tracking-timing integration by measuring the e+ trajectory up to the TC interface
- 6. Extending the γ -ray detector acceptance
- 7. Improving the γ -ray energy and position resolution for shallow events
- 8. Integrating splitter, trigger and DAQ maintaining a high bandwidth

CLFV Programs

