Latest results from the MEG experiment

Toshiyuki Iwamoto on behalf of MEG Collaboration

ICEPP, the University of Tokyo April 2012 APS Meeting in Atlanta

Outline

- μ→eγ search
- MEG experiment
- Detector performance
- Physics analysis
- Results in 2009+2010
- Other physics
- Prospects

µ→ey search

- Lepton flavor violating decay
- In neutrino sector, this is violated via neutrino oscillation. In charged sector, there is no observation yet
- Expectation of branching ratio with SM + neutrino mass < 10⁻⁵⁰
- New physics (SUSY-GUT, SUSY-seesaw, ...) predict large branching ratio below 10⁻¹¹

Signal & Background

Signal

- µ+ decay at rest
- Clear two body decay in final state
- E_{e} , $E_{Y} = 52.8 MeV$
- $T_e = T_Y$
- back-to-back $(\theta_{\rm ey}=180^\circ)$

Accidental background

- dominant for us
- Michel e⁺ + random y from RMD/AIF

decay background

Radiative muon

timing coincident

MEG experiment

- Requirements
 - Intense µ⁺ beam
 - e+ tracking in high rate environment
 - Good energy, position, and timing measurements

MEG status

- 1999 : Proposal
- 2007 : Engineering run
- Physics data taking
 - 2008 Sep-Dec published in Nucl.Phys.B834 1
 - 2009 Nov-Dec Preliminary result was presented in ICHEP2010
 - 2010 Aug-Oct 2009 + 2010 combined results (today's topic)
 - 2011 Jul-Nov is being analyzed

Detector performance(y)

- $\pi^- p \rightarrow \pi^0 n, \pi^0 \rightarrow 2\gamma$
 - back-to-back 55, 83MeV 2γs are suitable calibration for signal γ
- Various calibration methods are established to calibrate and monitor the detector condition
 - γ : CW Li(17.6MeV), Ni(9MeV), CW Boron(4.4,12MeV)
 - 241 Am α (QE, light yield), LED (PMT gain)

Detector performance (e+)

e⁺ angle(θ) ~ 11.0mrad

e⁺ angle (φ) ~7.2mrad

Analysis

- Blind analysis
 - (T_{eY}, E_Y)
 - calibration, BG
 estimation,
 performance
 evaluation can be
 done outside the
 box
- Accidental background study -timing sideband data
- RMD study Εγ sideband data

Likelihood analysis

$$\mathcal{L}(\vec{x}_1,\ldots,\vec{x}_N,R_{\diamond},A_{\diamond}|\hat{S},\hat{R},\hat{A}) = \frac{e^{-\hat{N}}}{N!}e^{-\frac{1}{2}\frac{(A_{\diamond}-\hat{A})^2}{\sigma_A^2}}e^{-\frac{1}{2}\frac{(R_{\diamond}-\hat{R})^2}{\sigma_R^2}}\prod_{i=1}^{N}\left(\hat{S}s(\vec{x}_i) + \hat{R}r(\vec{x}_i) + \hat{A}a(\vec{x}_i)\right)$$
Background rate constraints

- Fully frequentist approach (Feldman-Cousins) with profile likelihood ratio ordering
- Extended maximum likelihood fit
 - Observables : E_{y} , E_{e} , T_{ey} , θ_{ey} , ϕ_{ey}
 - Fit parameters : $N_{signal}(S)$, $N_{RMD}(R)$, $N_{BG}(B)$
- PDF is evaluated (mostly) from data
 - Background: spectrum measured in sideband data
 - RMD: theoretical spectrum convoluted with detector response
 - Signal: measured detector response function

Sensitivity

• 90% C.L. upper limit averaged over an ensemble of many toy PC experiments with BG only hypothesis with BG rate measured in side-bands.

Combined 2009 + 2010 Sensitivity - 1.6 x 10⁻¹²
 is 8x better than previous best upper limit (Br<1.2x10⁻¹¹ (90%C.L.) MEGA 1999)

Sideband Analysis

- Same analysis
 performed in sideband
 data before unblinding
 - T_{eγ} sideband (offtime)
 - Angle sideband (offangle)
- Observed branching ratio upper limits consistent with sensitivity
- Ready to open the blind box.

Blue curves: PDF contour $(1,1.64,2-\sigma)$ Selection

 $\begin{array}{l} (E_e\text{-}E_Y\text{:}\theta_{eY}\text{<}178.4^\circ, \; |\, T_{eY}\,|\, \text{<}0.278ns \\ (cos\theta_{eY}\text{-}T_{eY})\text{:}\; 51\text{<}E_Y\text{<}55MeV, \; 52.34\text{<}E_e\text{<}55MeV \end{array}$

N.B.: These plots are just for reference, not used in the analysis

Event distribution in 2009 and 2010

53

E_e (MeV)

- Blue curves:
 signal PDF
 contour (1,
 1.64, 2-σ)
- Events with highest signal likelihood (S/ (0.1R+0.9B)) are numbered.

These plots

 are just for
 reference, not
 used in the
 analysis

53E

52E

Confidence interval in 2009 and 2010

- Confidence interval calculated with Feldman-Cousins method + profile likelihood ordering
- Run2009 marginally excludes B = 0, but the significance is not high. (p-value~8%)
- Compatibility between 2009 and 2010 ~15%

CL curve: Allowed region of branching ratio can be read at any confidence level.

Likelihood curves are not directly used in confidence interval calculation

New result

Data set	Best fit	Sensitivity	LL(90%CL)	UL(90%CL)
2009	3.2x10 ⁻¹²	3.3x10 ⁻¹²	1.7x10 ⁻¹³	9.6x10 ⁻¹²
2010	-9.9x10 ⁻¹²	2.2x10 ⁻¹²		1.7x10 ⁻¹²
2009+2010	-1.5x10 ⁻¹²	1.6x10 ⁻¹²		2.4x10 ⁻¹²

- New upper limit : $B(\mu^+ \rightarrow e^+ \gamma) < 2.4 \times 10^{-12} (90\% C.L.)$
 - x5 more stringent than previous limit (B<1.2x10⁻¹¹, MEGA 1999)
 - Published in Oct. 2011 (Phys. Rev. Lett. 107, 171801(2011))

Run 2011

- Data statistics doubled.
- Analysis on data 2011 is in a good shape
- Detector performance (preliminary) already comparable to previous years

	2009	2010	2011(preliminary)
Gamma energy (%)	1.9% (w>2cm)	1.9% (w>2cm)	1.7% (w>2cm)
Gamma position (mm)	5 (u,v) / 6 (w)	5 (u,v) / 6 (w)	←
Positron momentum (%)	0.59 (core 80%)	0.61 (core 79%)	0.61 (core 86%)
Positron angle (mrad)	6.7 (Φ,core), 9.4 (θ)	7.2 (Φ,core), 11.0 (θ)	6.5 (Φ,core), 10.8 (θ)
Vertex position (mm)	1.5 (Z), 1.1(Y)	2.0 (Z), 1.1(Y)	1.9 (Z), 1.0(Y)
Gamma-positron timing (ps)	146 (core)	126 (core)	133
Gamma efficiency (%)	58	59	-
Trigger efficiency (%)	91	92	95
Data statistics (k-factor)	1.1×10 ¹²	2.1×10 ¹²	3.4×10 ¹²

Prospects

- Run 2012 in preparation
- Explorer O(10⁻¹³) with
 2011+2012 data
- BG is starting to limit the sensitivity improvement
 -> Detector upgrade

Detector upgrade

- Upgrade of MEG experiment under consideration, aiming at sensitivity ~O(10⁻¹⁴)
 - Higher beam intensity(10⁸ μ
 +/s, already possible at PSI)
- R&D have started based on various ideas on new detectors
 - LXe detector with smaller photo-sensors(PPD, PMTs, ...)
 - Unique-volume gaseous tracking system
 - Thin silicon vertex tracker
 - Active target
 - Tracker with scintillating thin sheets
 - ...

Unique-volume gaseous tracking system

Silicon vertex tracker

Other physics in MEG

- Measurement of radiative muon decay (RMD) branching ratio and Michel parameters
- Exotic physics searches
 - Search for muon decay mediated by light pseudoscalar particle, μ⁺→e⁺φ, φ→γγ
 - Search for muon decay with massless Majoron, µ→e⁺J

Summary

- MEG updated the BR($\mu \rightarrow e \gamma$) upper limit 2.4x10⁻¹² at 90% C.L.
- 2011 data analysis is in progress
- More data in 2012 to explorer the branching ratio region of O(10⁻¹³)
- Detector upgrade R&D in progress
 - aiming at sensitivity of O(10⁻¹⁴)

Event distribution in 2009+2010

- Blue curves : Signal PDF contour $(1, 1.64, 2\sigma)$
- Selection: 51<EGamma<55MeV, 52.34<EPositron<55MeV, $\cos\theta_{\rm ey}$ <-0.9996

Likelihood fit

ICHEP2010 result

 Preliminary result on data 2009 was presented in ICHEP2010 showing a small excess

Preliminary results from data 2009 shown at ICHEP2010

Blue lines are 1(39.3 % included inside the region w.r.t. analysis window), 1.64(74.2%) and 2(86.5%) sigma regions. For each plot, cut on other variables for roughly 90% window is applied.

Updates from ICHEP2010 result

- Updates with new data (from run2010) and new analysis
 - Data 2010 (data statistics = 2xdata 2009)
 - Improve detector alignment
 - More detailed implementation of correlations in positron observables
 - Improve magnetic field map
 - Improve likelihood analysis tool

MEG Constrains New Physics

Run 2011

- All sub-detectors operational with reasonable performance for whole period
 - New DC HV-system (reduced noise)
 - New DC alignment system
 - More efficient LXe calibration (CEX with new BGO detector)
 - Slow LXe light yield degradation (well monitored and corrected)
 - Higher DAQ efficiency with multi-buffer scheme
 - DAQ had to stop in beg-Nov due to damage of cryo-plant caused by power outage.
- Data statistics doubled. run2011 ~ (run2009+run2010)

Run2012

- Increased beam intensity is planned (x1.15, $\sim 3.5 \times 10^7 \, \mu^+ \, stops/s$)
- Some improvements in resolutions and efficiencies anticipated

Likelihood analysis

 Fully frequentist approach (Feldman & Cousins) with profile likelihood ratio ordering

$$\begin{split} \mathcal{L}(N_{\rm sig}, N_{\rm RMD}, N_{\rm BG}) &= \frac{e^{-N}}{N_{\rm obs}!} e^{-[(N_{\rm RMD} - \langle N_{\rm RMD} \rangle)^2/2\sigma_{\rm RMD}^2]} \\ &\times e^{-[(N_{\rm BG} - \langle N_{\rm BG} \rangle)^2/2\sigma_{\rm BG}^2]} \prod_{i=1}^{N_{\rm obs}} [N_{\rm sig} S(\vec{x}_i) \\ &+ N_{\rm RMD} R(\vec{x}_i) + N_{\rm BG} B(\vec{x}_i)], \qquad \vec{x}_i = \{E_{\gamma}, E_e, t_{e\gamma}, \theta_{e\gamma}, \phi_{e\gamma}\} \end{split}$$

$$\lambda_p(N_{\text{sig}}) = \frac{\mathcal{L}(N_{\text{sig}}, \hat{N}_{\text{RMD}}(N_{\text{sig}}), \hat{N}_{\text{BG}}(N_{\text{sig}}))}{\mathcal{L}(\hat{N}_{\text{sig}}, \hat{N}_{\text{RMD}}, \hat{N}_{\text{BG}})},$$

Likelihood Fit 2009

Solid lines correspond to the best fit, and dashed lines correspond to 90% upper limit of number of signals Without physics constraint: N_{signal} is allowed to be negative in the fitting Gaussian constraints from sideband: $N_{RMD} >= 27.2 \pm 2.8$, $N_{BG} >= 270.9 \pm 8.3$

Likelihood Fit 2010

Solid lines correspond to the best fit, and dashed lines correspond to 90% upper limit of number of signals Without physics constraint: N_{signal} is allowed to be negative in the fitting Gaussian constraints from sideband: $N_{RMD} >= 52.2 \pm 6.0$, $N_{BG} >= 610.8 \pm 12.6$

2009+2010 Likelihood Fit

Solid lines correspond to the best fit, and dashed lines correspond to 90% upper limit of number of signals Without physics constraint: N_{signal} is allowed to be negative in the fitting Gaussian constraints from sideband: $N_{RMD} > = 79.4 \pm 7.9$, $N_{BG} > = 881.7 \pm 15.1$

Systematics

- Method to incorporate systematics
 - Uncertainties for N_{RMD} and N_{BG}: Profiling
 - Other systematics: Smearing likelihood ratio distribution simulated for the pseudo-experiments in the computation of the confidence intervals, by fluctuating PDF parameters according to their uncertainties.
- Size of effect of systematics : ~ 2% shift in UL
 - Largest contributions come from uncertainties of
 - Offsets of the relative angles
 - Correlations in the positron observables
 - Normalization

Search for $\mu^+ \rightarrow e^+ \phi$, $\phi \rightarrow \gamma \gamma$

- Search for muon decay mediate by very light pseudo scalar particle
- $\mu^+ \rightarrow e^+ \phi$, $\phi \rightarrow \gamma \gamma$ is not yet searched
 - Leptophobic case is possible, coupling to ee is small and only decay into γγ
 - Phys. Rev. D72, 117701(2005)
- Preliminary result from analysis on data 2009+2010 shows branching ratio UL of O(10^{-11} - 10^{-10}) depending on M_{ϕ}

Event Example(MC, M_{ϕ} =20MeV)

Search for $\mu^+ \rightarrow e^+J$

- Possibility to search using MEG data for two-body muon decay with Majoron, µ⁺→e⁺J
- Potentially complementary to accelerator search
- Previous search by TWIST
 - BR($\mu^+ \rightarrow e^+ J$) <6.7x10⁻⁵@90%C.L.(for A=-1)

$\frac{d\Gamma(\mu \to eJ)}{dcos\theta} = \frac{m_{\mu}}{64\pi} |O^{ccp}_{L\mu eJ}|^2 (1 \pm P_{\mu} cos\theta)$

M. Hirch et al., Phys. Rev. D80, 055023(2009)

MC

